Abstract

OOCASE User Manual

Version 4.0.4 2018-12-11

Welcome to the OOCASE User Manual!

The purpose of this manual is to deliver a core conceptual understanding of some of the
fundamentals in efficient practical information management of technical information whose life
times span decades.

These core concepts are high-level and hard to acquire without concrete examples. Thus OOCASE
which is a fully commercially competetive product within its scope of applicability, is used as a
teaching tool to transfer this higher-level of understanding.

Intended readers are programming experienced life-time-students of any age that have severe
challenges to master, and need the best education possible to implement what is neccessary to gain
the long-lasting quality-of-life producing effects into foundational physical infrastructure that we all

need.

Preface.........

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18
Chapter 19

.. 8
The PUurpose 0f OOCASE ..ot ene e 9
Data and INFOrmationccooiiiiiiiie e s 17
The Role of OOCASE in the Software Development Process.........c.cccoovevveieenen. 19
The Meta Model 0f OOCASEooiiieeeee e 22
Domain Model DeVEIOPMENT........ccveiie e 29
SOUICE COUE GENEBFALION.ciiiiiiiiieitieie ettt sre b anee s 33
Prototype TTEratioN.........ccoiiiiiiiicieee e 36
ConfIQUIAtioN FIlESc.viiieeiece e e 37
IMmport of DOMain MOGEISc.ooiiiiieicce e 39
Export of DOmain MOGEIScoooveiiii e 52
Quality Assurance, Version and Release Management............ccocoevvninnnieeennns 55
Quality Assurance FUNCLIONALILYccocveiiiiiiiccecc e 58
Version and Release Management...........cccooeiiiiiiiininieee s 64
Using a Relational Database for Model Sharing and Distribution...................... 70
Reuse of Models with Copy and Paste ..., 72
Information Quantity Measurement...........ccc.covvevieiieii e 76
Profile Extensions of the MetaModel ..o 77
FUNCHIONAIITY ... et ens 81
Summary and CONCIUSIONS..........ccoiiiiiiiieee s 82

o w>»

R (=] 5] (0T T 83

References for Exceptional StUAENTS..........cccoiviieiiiie i 85
DomainModel of DOCUMENTDICLIONANYcc.oiuiiiiiiiieie e 86
(€ [0151S7= VYU OS SRS PSRSR 87

Copyright © 2016-2018, ROJTEC, Olof Johansson

All rights reserved.
You may download and use a personal copy of this document. You may not distribute copies of this document to 3™

parties without a written permission.

Table of Contents

PITETACE. ... b E et e bbb Rttt n et e e bt ne et 8
Chapter 1 The Purpose 0f OOCASE ..o 9
1.1 Calculation of information quantity in @ model. ... 9
1.2 Support for automated checks and documented quality aSSUFanCe.ccceoverrrereeneseeeeneseaneen 10
1.3 Globally unique 128 bit 0DJECt IdENTITIENS........coiiiieiieeee e 11
1.4 Open Export/ Import in many neutral FormatS...........ccooveiieiiii e 11
15 Explicit well documented quality assured and release managed meta model...........c...ccceeveieennne 11
1.6 Automated source code generation for a number of well established software platforms.............. 11
1.7 Purpose of the Infological APPrOACKoouiiiiiieeiee ettt 12
1.8 Towards an Efficient Shared Information Highway Network for Implementing the UN 2030
Agenda for Sustainable DeVEIOPMENT ..ot 13
Chapter 2 Data and INfOrMatioNcooeiiiiiiiiiie et 17
2.1 Definition OF DALAccoiiiiiiiiiieee e 17
2.2 Definition of INFOrMETIONooviiiiiiii e 18
Chapter 3 The Role of OOCASE in the Software Development Process.........c.ccceevevvrnennen. 19
3.1 Brief NIStOry 0f OOCASEoo e e e e e ee e be e s reesaeesreesree s 19
3.2 Product MOdeling SYStEIMS.......ciuiiiieiiesie et e e e ee e sre e sreesaaesraenneean 20
Chapter4 The Meta Model 0f OOCASE ..o 22
A1 DBODJECL. .ttt bbbt 22
A2 EIBMENT .o 23
4.3 MOUEIEIBMENT ...ttt b ettt b b nn e 23
4.4 NBIMESPACE. ...ttt bbbt bt b e bt s e e bt bt e bt s bt e b e Rt b e b e e b e e s e bt ereennenre e 23
S O o] 1< od S TSSO TP POO U PSP PRURPRURPPIN 23
T = Tod < Vo [SRS 23
AT IMIOUBL ...t 24
I B T L 1 (o (o= Y USSR 24
e B B To 0T U1 1Y, o o[- USSR 24
0T . oo] -SSR 24
B LT ClBSS ottt E bRt b bbbttt 24
I = =11 1o TS o 25
A.L3 ATTIDULE ..t b bbbttt et 25
414 ATFIDUIEGTOUD ...ttt bbbttt bbb bbbt nn e 25
4.15 Property / DataEIEmMENTTYPEcciiieieceee ettt sttt et sre e penne s 25
T Y/ 0T I - OSSR 26
417 ValUEDOMAIN ..ottt ettt r e ettt r e nn e 26
4.18 Graphical Syntax used in Object Model DIiagrams..........cccoeveeierireeiene e 27
Chapter5 Domain Model DeVvelopmMEeNT...........ccoiiiiiiii i 29
5.1 Single user application deVelOPMENL...........ocv i 29
5.2 Team based application deVEIOPMENTooiiiiieee et 31
Chapter 6 Source Code GENEFALION..........ccceeiiiiiiiieie et re et esre e 33
6.1 OVErall WOrKFIOWoviiiiiiiicicc e 33

6.2 OOCASE bUilt-in SOUICE COOE GENEIALOISccevvveeiieeeie ittt et e e s re et eeesssseerarreereesssssrrerereeesssans 33

6.3 Source Code GENEIALION SEIVICESciuiiiieeieerteeie st seeeeste e e e ste e e stesteeseeseeereesaesseeneesresseeseeseeanes 34
6.4 MetaModelDatabase SQL based Source Code GENEratorS........coveieeirieieeiieiie e scre e sreesree e 34
6.5 Organizing Source Code Generator Build SYSIEMScceiiiiiiiiiiiiiiereeeeee e 34
6.6 Using GIT for Source Code Generator MainteNaNCe.............ccvevvviverieieeiece e 35
6.7 Quality Assuring Source Code Generators with the Benchmark Domain Model...........c..cc.c......... 35
6.8 Test Suites for SOUrCe COTe GENEIALONScoiieeierieeeee et see st eree e te e eesreeneeseeeeeenes 35
Chapter 7 Prototype HEratioN..... ..o et 36
Chapter 8 Configuration FIlESc.coieiiiii e 37
8.1 DIIECIONY STIUCTUIE ...ttt bbbt b bbbttt bt 37
ST - (0] 1 0 1T | PR 37
8.3 Macro expansion $(<Paramenter NAMES)cooiiirerieiririre e e 37
Chapter 9 Import of Domain MOdElS...........cccooiiiiiiieecece e 39
9.1 IMPOIT ODBC ...ttt ket b e b bt s bt e s et s bt e s bt be e b e sbeebeennenrenne s 39
9.2 Lap oo o A = I PP RPPRPRTIN 43
TR T /| TSP 46
9.4 Create XML IMPOrt DefiNITIONoocoiiiii e e 49
Chapter 10 Export of Domain MOEIScoiiiiiiiiiic e 52
10.1 BiNary StOrage FOMMALS........cciiiiieiiecieeste ettt et e sbe e e be s ae e s e besnaesresreeneesrenne s 52
012 G SRS 53
01 T T PSSR 53
I | | SR 53
0TS 1Y/ | I I SO 54
0T 1Y | OSSPSR 54
Chapter 11 Quality Assurance, Version and Release Management............ccccoocvvvevvereiinnnnnn 55
11.1 Purpose Of QUAlItY ASSUIANCEc.eiuiiiieiiiiiite ettt bbbt b 55
11.2 Purpose of VErsion ManagemEeNtccueieiieiieieeieseseese e seeste s e e stesre e e stesseesaesteesaesresseesesaeeneas 56
11.3 Semantic VErsioniNg 2.0.0oce oo et e et re e e sre e e e e nnae s 57
Chapter 12 Quality Assurance FUNCLIONANItYcccooveiieiiceceece e 58
12,1 Checking and AutomMated ChECKSccviiieiiiiie et s re e sreane s 58
12,2 Check Level Structure and CheCKPOINTSccveiiiiiie i 59
12.3 Recording a Passed CNECKcciiiiiiiieie ettt e ste e re e sneesneesneesnnennne s 62
12,4 APProVING 8N ODJECL......oouiiiie ettt et ne e e enean 63
Chapter 13 Version and Release Management...........cooveiiiriiiieiieneee e 64
13.1 Editions, VErsions an0 REIEASES........cccuvveiiieiiiiieeeiie et eee ettt e e et s e ettt e e e s s s aser b reeteessssssrreeeeeessaans 64
A - £ To] g I 51 0] Y2 SRR 66
13.3 The VersioNOWRNEIPALNccuiiiiie ettt st saesteeneeneenne s 67
Chapter 14 Using a Relational Database for Model Sharing and Distribution..................... 70
14.1 Requirements for Providing a Relational Database ServiCeccccooeviiiiiiiiie i 70
Chapter 15 Reuse of Models with Copy and Pasteccccccevviieiieii i 72
15.1 Dominance Ranking of Classes in @ DOmMainMOdelcccoooeiiiieiiiicicce e 73
15.2 The Copy/Paste Metaphore and it's complication in the real world............cccccovvivivi e, 73

15.3 Examples for Functionality Coverage and Performance AnalysiS.........cccccevivevieiieniesiesnnesnennnns 74

15.4 Managing Traceability with Object Identifiers during Copy Paste.........cccccevovviveiiniiiieneneie e 75
Chapter 16 Information Quantity MeasuremMeNt..........cccooeiiriiiieiienene e 76
0 R I T YR USSR 76
T - Tox 1 - TSROSO TTPRURR 76
Chapter 17 Profile Extensions of the MetaModelcccoooeiieiiiiiicceee 77
17.1 Short INtroduction t0 PrOFIlES.......c..ciiiiiiiieeeee s 77
17.2 The DomainModel Of Profiles..........oo e s 78
17.3 Comparison With UML ProfileS..........ooiiiiiiiiioicie e st 80
Chapter 18 FUNCLIONAIITYcoeiiieiiee e ettt nne s 81
18.1 EQOIESS BUSIMESSeviiieiiieiiieiieesteesteesteestteesteesteesteesreessaesseesste e te e beesteesseeasaeaneeeseeeseeesreesneenreesneennnnns 81
18.2 Building Efficient Interfaces Between Huge Refactorable Knowledge Domains - Efficient
QLo [=To 0TI oo [0 1 1)V PSS 81
Chapter 19 Summary and CONCIUSIONS...........ccueiiiieiiee e 82
A] (] =] (o0 PSRRI 83
B References for Exceptional StUAENTS..........ccviviiiiiiie i 85
C. DomainModel of DOCUMENTDICLIONANYccooiiiiiiiieie e 86
D (€ [0151S7= 1 YRS PSSR 87

Preface

To Software Engineers who want to get something done without complicating it more than neccessary

OOCASE is an Objection Oriented Computer Aided Software Engineering application that significantly enhances
the productivity of a software engineer or collaborating software development team.

Every tool has it's scope of applicability. Outside this scope there is an exponentially rising "cost/benefit" barrier
that requires a different architectural and methodological approach to break through. This barrier has to do with
what we humans are and the limitations of how much knowledge and information a person or small team of
efficiently collaborating engineers can be masters of.

OOCASE works well for model driven software development for applications whose information models contain
up to 250 classes and a similar amount of relationships. Such models may produce generated source code sizes of
perhaps ¥z a million lines of source code, for ONE implementation that can be maintained by a small team.

Even if OOCASE works well with object oriented information models up to 5000 classes and has been used for
integration planning between software systems with more than 10000 classes and hundreds of thousands of
attributes, such kinds of developments require larger teams of people that are organized in a healthy knowledge
ecology by a company with healthy corporate governance and well maintained long-term win-win relationships
with companies in its supply chain and its customers.

The purpose of this User Manual is to provide the theoretical framework for becoming proficient in using
OOCASE, and with that conceptual understanding have acquired the knowledge potential to develop and deliver
the next generation of tools we software engineers and our collaborating environment peers need, to with
implementations that work in practice, cost-efficiently master the known challenges that decade spanning
information systems management impose. Including providing users with high-performance.

Chapter 1 The Purpose of OOCASE

When the purpose of something is MUCH bigger than itself, it receives a divine force that can make
it overcome
[The Poet]

The purpose of OOCASE is efficient use and reuse of Information Models?.

An Information Model is a declarative design specification, or can be seen as a contract of what information a
computer system software should be able to capture, store, process and present.

The information model is expressed in a language that after a short introductory training can be understood by non
computer specialists, and serves as a tool for communication between 3 different groups of people. a) domain
specialists that provide the requirements of information representation needed by their knowledge domain, b)
computer specialists that implement a software solution, and c) end users of the computer system software who
use the information model as documentation.

OOCASE is an object oriented computer aided software engineering tool with a number of unique features.
1) Calculation of information quantity in a model
2) Support for automated checks and documented quality assurance.
3) Globally unique 128 bit object identifiers for distributed development
4) Open Export / Import in many neutral formats
5) Explicit well documented quality assured and release managed meta model.
6) Automated source code generation for a number of well established software platforms.

Now it’s perfectly allright and recommended to skip to Chapter 2 on page 17, since the following is only
interesting for large scale project managers who build IT-systems that need to be operational for decades in
whatever shape new technology allows safe information storage and exchange resources to be implemented upon.

1.1 Calculation of information quantity in a model.

Information quantity is measured in a unit called EC for elementary constellation. An elementary constellation or
e-constellation is the smallest possible unit that still carries meaningful information that can be stored or
transmitted as a message from a sender to a receiver.

L An information model defines Structure AND from the Structure directly inferable Behaviour. Inferable behavior that implements
from the structure inferable application programming interfaces (API's) that follow easy to remember and use naming and
parameter setting conventions and can be implemented by automated source code generators specialized for a highly optimized
implementation in a particular target source code language. Other conformant languages such as UML define both structure and
behavior. Large amounts of basic kinds of behavior can be derived from the structure and implemented automatically with model
driven source code generators or model driven interpreters. For new application development it is cost efficient not to waste too
much time on hand written software behavior before the core information structure (DomainModel) is well understood with
examples that are entered into generated prototype applications populated with realistic production environment information.

The purpose of this measure is to provide decision support for which model to choose if there are several
alternaive ways of modeling a certain physical product or artifact, perhaps using different software systems.

A model can be anything that has been formalized with the language constructs in the DomainModel language to
a level of detail that allows software to be implemented and the models information stored in a database
representation. If two models provide equivalent functionality but differ severely in complexity or computational
performance on present technological infrastructure available for the purpose of the model's end user application,
someone has to decide which model to choose.

Fact based measurements are descisive (or important decision support in political environments) when the
accumulated cost of several decades of IT-system maintenance for serving a fleet of complex engineered products
that delivers a fundamental service for the sustainment or protection of a customer's society, requires IT-support
for cost-efficient management and maintenance.

In a modern larger engineering company that promotes its staff by merit and leaves plenty of opportunities for
choices of a future carrer open and inviting, the time at the IT department while learning the information
structures of the core business is a knowledge development platform for the staff supply that can take on
challenges of the more advanced jobs2 Jobs that require an understanding of how to implement production
capacity for new business opportunities. This in modern engineering companies generous staff meritation requires
that the supply can be held up by efficient education of new staff to replace the vaccum for skill enabled career
advancers that exposure to this core business knowledge in a concentrated format produces. The choise of model
can actually impact the choise of paradigm for career advancement in a company, and with that the whole future
for it's business?.

The output of a modern larger engineering company in the form of life quality sustaining societal infrastructure
products are frequently taken for granted by consumers. It is only the experts of these products who have the
REAL power to make them deliver their output at the cost possible given the current state of the art knowledge in
all those fields of of expertise who combined make such products producible at an affordable cost for the end
users of the product or it's services.

Information quantity based decision support is especially important when two separate communities fight over a
standard and are unexperienced* in each others technological domains or software implementation support for
these technological domains. Unneccesary complex models are harder to teach and maintain, and divert resources
from other important areas of development. Having some measureable facts may resolve disputes and get the
"fighting communities” focused again on delivering added value, standing on a fact based ground, and if corporate
governance is excellent, get amplified by mutual education.

1.2 Support for automated checks and documented quality assurance.

The Quality Assurance techniques applied here were adopted from the mechanical engineering industry where the
high cost of failures due to errors in design specifications (drawings etc) drove this industry to develop survival
skills that add some spending in the earlier stages of development. Where this added spending serves as insurance
against unpleasant expensive surprises later. OOCASE supports a number of levels of automated quality checks,
that aid various "check-points” in a cost efficient iterative development cycle where many people (frequently with
too little time) are involved.

2 Where the best examples of Engineering Companies are plain clever self sustaining career production machines for talanted people
whose skills are neccessary to fix our real problems.

3 There is always potential competetive advantage layers above a current well-known established business. Those above layers
requires creative people who know the core business AND something else that none of the established market players have thought
of before or delivered the investments to make it become available for a solvent enought customer basis who appreciates its new
products and buys them for a GOOD reason. If the core business is obscured by an unneccessary complex model, the supply of
people who understand it well enough to develop the potentially business income generating layers above it will be throttled. This
is stuff that matters over decades, when "great asset" people move for reasons outside the control of the company.

4 This is a real fact due to the enourmous size of various industrial information models, and the amount of studying time and practice
it takes to become familiar enough with their details to make fact based decisions.

10

1.3 Globally unique 128 bit object identifiers

Ensuring global unique identifiers for objects is a re-occurring problem throughout the whole globalizing IT
industry. It has with performance in applications to do, scalability and ability to produce large amounts of
uniquely identified objects in parallel by people and teams that are unaware of each others existence. Where the
unique object identifier issuing mechanism must provide the ability to combine results of independent
uncoordinated work in a database that requires unique object identification AND traceability for quality assurance
reasons, and efficient on-demand-access to linked external resources outside the local database.

The method chosen for OOCASE and plenty of production systems produced, is providing each creator of new
object identifiers with a unique 64 bit identifier (Highld). Each such creator has a self managed 64 bit
incrementing counter (Lowld) for lifespan unique identifiers from that source.

There are plenty of other ways to solve this problem, but this approach is simple, efficient and it works in practice.

1.4 Open Export / Import in many neutral formats

OOCASE provides many ways of exporting and importing information models. Thus your models are never
locked-in within this tool. If a better tool comes along (creative destruction) you can proceed with that.

1.5 Explicit well documented quality assured and release managed meta
model.

The meta-model of OOCASE is licensed to all paying customers for their own implementation needs in the most
empowering format. OOCASE is modeled in OOCASE. Thus if you develop source code generators for a new
software platform that completely outperforms the one OOCASE is using, you are free to implement your own
OOCASE tool on that new platform and migrate to that platform with all your information model assets intact®.

1.6 Automated source code generation for a number of well established
software platforms.

Source code generators are available for a number of SQL92 compliant relational databases, Smalltalk, C++ and a
few other programming languages.

The rest of this introductory chapter is there for readers who wan't to understand the benefit of a more efficient
standardized "asphalt laying machine" for putting "tarmac on the emerging INFORMATION gravel roads of all
diverse shapes and sizes, so they without numerous severely errorprone and costly reloading can carry the
truckloads of global information we need to ship to the computational centers that can convert it to reliable
decision support for our industrial leaders and national goverments.

5 This may seem stupid with regards to the self-sustainment principle of the company making a living on OOCASE. However in the
perspective of global warming whose solution is more important than the self-sustainment of a particular company whose
employees can find a living somewhere else, it's non-productive with regards to over history gathered experience to prevent
"creative destruction" to happen if the new alternative over time and by facts and evidence delivers a much better output
performance with regards to achievement of the goals setup in the UN 2030 Agenda.

11

1.7 Purpose of the Infological Approach

To understand the purpose of any kind of software one has to analyze its role in the larger whole.

The following is a quote from the preface of [Sundgren 73] which describes the foundational infological theory on
which OOCASE builds.

"An infological approach to data bases" reports parts of the data base research and development work which
has been carried out over a number of years at the National Central Bureau of Statistics, Sweden. Professor
Borje Langefors, University of Stockholm, Department of Administrative Information Processing, has been
the scientific supervisor of the reported project. Very briefly the objective of the project has been to develop
an integrated theoretical framework for design of large-scale data bases. The framework should

(a) enable people who are not data processing professionals to co-operate actively and constructively in data
base design projects

(b) make it possible to transform systematically the problems, desires, and requirements of those who are
affected by the projected data base into problems which can be tackled by data processing specialists

(c) enable data processing specialists to analyze the computer-oriented data base problems systematically
and with sufficient precision

(d) make it possible to design data bases with which decision-makers, planners, and researchers within
different specialized fields could interact constructively, even if the information needs of the interactors are
complex, and even if they lack knowledge about computers and computing

There are definitely different opinions among authorities in the computing world as to whether it is feasible
to cover all the aspects (a)-(d) within one an the same framework. This report supplies evidence in support
of the hypothesis that an integrated approach is both feasible and necessary for the success of large-scale
data base undertakings."

The above quote from year 1973 is still valid, however the situation has improved. (a) has been improved with
graphical representations of information models that are used in interactive development seminars where a mix of
domain specific expertise participate and all understand what they are talking about so efficient communication
can take place. (b) and (c) have for the purpose of implementation of basic information handling software
functionality for delivering fully functional prototype software implementations been fully automated for certain
target platforms. (d) has been significantly improved with automated model driven declarative implementation of
software prototypes from information models, that enable domain experts to express their expertise with large
scale examples, that reveal the "problems” in the details, where the Information Model does not adequately
represent reality. Some stuff in seminar or prototype evaluation situations are "gutt feelings" of participating
experts, and it requires certain "emotional language literacy" and social skills by a software engineer/seminar
leader to get that information out. According to a non-disclosed source there are 39 different emotional
expressions that experienced people use while communicating interactively. Human skills in understanding and
acting efficiently on the cues of non-spoken emotional language AND knowing the domain of the expert to a level
where the facts can be brought out by asking the right questions requires a special brand of people, of which YOU
are a candidate.

Or you can focus on the technical implementation parts of translating declaratively specified Information Models
to efficient software implementations on the latest superior hardware and software platforms.

12

1.8 Towards an Efficient Shared Information Highway Network for
Implementing the UN 2030 Agenda for Sustainable Development

Some problems can not be solved in traditional ways since there is no-one who owns the problem.
Or there exists no single entity with enough resources or authority to solve the problem in practice.
Or the entity producing the problem is not within the authority of the entities subjected to its effects.

In order to solve a problem it must first be understood. The UN 2030 agenda for sustainable
development has set out a goal. To reach that goal, we need a plan for how to get there.

A typical approach could look like:

1) Build a reasonably adequate map of the current situation

2) ldentify spots where investments would provide largest return with regards to goal achievement
3) Allocate resources to fix those problem spots

4) Implement the fixes and restart at 1)

Besides ignoring the natural law of self-sustainments, the above approach hit's it's exponential
boarder of applicability rather quickly, due to a problem we encountered in Software Industry a
long time ago:

The Language Problem

We still have not solved it satisfactorily however software industry rolls on, in its complex supplier
value chains, each actor in it's own little language islands, at the "speed and load capacity of a
horse/8-bit CPU", where we could use a "modern truck/64-bit multi-core” instead.

But that is unfortunately not possible, since there are to few "roads/standards" that can "carry such a
truck/make use of available information exchange eco-system™ (even if there are instances of such
"roads" and "trucks" in certain nisches that have an enormous turn-around).

Even if it is possible to implement a "truck™ for, for instance "Environmental Data", there would not
be a large enough market for it. The infrastructure ranging from CPU, OS, DataBase, Network
Communication Protocols, User Interfaces, Local User Language Adaptations, needs to be
implemented with instances for which there is an educated work force who can install and maintain
them.

And finally the end users, which collectively are the most expensive and valuable actors in this
chain, needs to be educated in order to know what decisions to take based on the delivered
"Environmental Data".

But there is a solution to this. A distributed one. One that will require an agreement or arrangement
of peace and non-hampering interference by external actors that have their own agendas (or internal
problems) and don't care about "the truck's™ success since it will not be under their control.

6 Law of self sustainment) An active entity e.g. @) biological cell, a) plant, b) animal, c) person, d) organization, e) company or f)
nation;

that can not find a way to sustain itself with; @) nutrition and energy (provided by its organism), a) nutrition and sunlight, b) food, c)
food and housing, d) work force, e) work force and income to pay taxes and work force, f) tax income (to pay for education,
defence and law enforcement), educated workforce, peace and stability, law enforcement (that allows its educated citizens to set up
companies that are not robbed of their resources (material, money, working time), and employ an educated workforce that can
produce the added value necessary to generate tax and the companie's self sustainment);

will starve and eventually perish. The basis for action is energy, without energy action is not possible.

13

The solution is based on some lessons from the evolution within software industry and other
domains, and delivers shortcuts that can shorten the time table from decades to years.

To explain this the "generalize from examples™ approach is taken

1.8.1 The Software Expansion

The personal computer was founded on the invention of the CPU on a chip. Success stories of chips
like the Intel 8080 lead to low cost competitors like the Zilog Z80, Motorola 6800 and MOS 6502.
The possibility to mass produce personal computers at a low cost lead to an extraordinary expansion
during the late 1970's. The availability of PC's in all kinds of different industrial, academic and
personal environments lead to the creation of software industry that in turn had an extraordinary
expansion in the 1980's.

Due to the large distributed presence of personal computers and software tools for software
development, the same scale-up problems when software grew larger were detected in wast
amounts of different places. Plenty found their own solutions and put them into their own software
and software development methods.

In the 1980's a very diversified ecosystem of programming languages, software development
methods, tools and software products had emerged.

In academic and other meeting arenas for software developers, people realized that they had
common problems with translating data from one program to a suitable format that could be used in
another. The same thing appeared in larger software development projects where models and
methods from different interacting sub suppliers had to be interfaced or integrated. There was a
growing need for a common language.

There seems to be three approaches for finding a common language. These have been tested in
plenty of computer science historical peak events and delivered their output in the form of
publications, standards, organizations and companies maintaining the standards. The three
identified alternatives are:

1) Some clever people with indepth knowledge of the problem, design something that takes the best
out of everything they know and design something new that solves the problem.

2) A large group of representatives with different backgrounds, requirements and visions come
together and with fact based arguments and efficient negotiation techniques come up with a
compromise that works and deliver an output that is useful to all participants.

3) Some actor goes ahead and markets its solution to a scale that it in practice becomes the de-facto
standard that gets the most users and thus everyone, in one way or another, has to adapt to.

A lock-in that, if the technology is inferior compared to others, may put a suffocating blanket on
development seen from a larger context and the potential available in its large user base.

OK, so what are we supposed to say about this?

A Swedish famouns quote is: "Ja, det ar for javligt" and that ends the story with a statement that
everyone can agree with. A big sigh and no change. However that comment is a violation against
since long gathered wisdom. The ones that know something better need to pursue their acts,
knowing and learning more, and facts if proven usually makes a difference. You might know where
the facts are, however you must find them and present them in a way that serves the purpose of
change towards the better.

14

And remember, it usually does not matter what a GOOD leader who cares about her/his followers
does, as long as it put's unity within the group which ends internal fighting and frees up working
resources for working towards a goal that leads to an improvement.

So lets focus on combatting global warming, and the facts about what is needed for that will fix the
rest.

1.8.1.1 1) Engineered Standard - Relational Database Language (SQL) Example
Proos:

+

Cons:

1.8.1.2 2) Negotiated Standard - Unified Modeling Language (UML) Example

Proos:
+

Cons:

1.8.1.3 3) DeFacto Standard - (somewhat sensitive to select the example) Example
UNIX, Windows, Linux, C, C++ etc.

Proos:
+

Cons:

1.8.2 The Railway Expansion

With the invention of the steam engine, and the landmark locomotive Rocket , it suddenly was
possible to move heavy goods and passengers over larger distances that outperformed "horse and
carriage”. Railways were built in all kinds of places in Europe by entrepreneurs with a transport
business idea by different contractors.

As the different tracks came to meeting ends, it eventually became clear that the whole
transportation system would become much more efficient if there was a standardized track size.
The benefit with a common standard was that the goods would not have to be moved between trains
running on different track sizes at the meeting points, and that a manufacturers of locomotives and
waggons would get a much larger market if all rail-tracks had the same dimensions, thus enabling
mass production of the same designs, with a better profit margin as result, and competition which
lowered the prices for "rolling transport infrastructure™.

1.8.3 The Shipping Industry Expansion

A break through in the cost efficiency of shipping was the invention of the container. A
standardized package for all kinds of goods that could be transferred between ships, railway
carriges and trucks reduced time and cost at goods transit points. Just the lowered transport cost
made it possible to trade larger volumes of goods at a lower profit margin, thus increasing trade.

15

The common lesson from all these examples is that the EXACT formulation of the contents of a
standard is not that important, however it MUST work in practice, it MUST be efficient compared
to the state of the art, and it MUST have a self-sustaining system structure where all participant
roles in that structure have win-win relationships to each other. Who is taking a particular role in the
system structure is not that important if that actor maintains healthy win-win relationships with its
partners in a supply chain AND maintains healthy co-opetition with its competitors, where they
collaborate on developing efficient standards for the higher layers that are not yet mature enough or
large enough to provide the volume benefits of a by GOOD standard enabled mass market.

There is always a higher layer for the actors that are thrifty, follow the natural laws of healthy
business ecosystem dynamics and build their value adding products on the best available standards.

16

Chapter 2 Data and Information

Some things are immaterial, but must be transmitted with the aid of the material
[The Poet]

Most people have an intuitive understanding of the terms data, information and knowledge. Like for
most words this understanding is a product of their life experience of how these words are used.
Many see them as different labels for the same thing, and use them interchangeably. People talk
about databases, information technology and knowledge based systems, without really making
much difference between them unless having some deeper interest or experience in developing such
things or exploring them.

There is however a clear benefit of having a more precise definition and understanding of the
concepts of data and information in the quest of developing efficient information system.

2.1 Definition of Data

The following definition is from [Sundgren 73], the thesis that my GREAT professor put in my
hands after entering his office and explaining my problem of making measurable science out of data
modeling.

Definition of Data: [Sundgren 73], page 20

If a person intentionally arranges one piece of reality to represent another, we shall call the
former arrangement data, and we shall say that the arranged piece of reality is a medium, which
is used for storing the data.

This definition covers all kinds of data: digital data, analogous representations, spoken and written
language, etc.

Note the wording " ... intentially arranges ... to represent".

It is not sufficient that two phenomena are related to each other, incidentally or by design. There
should have been a human intention of representing , and not only correlating, one thing with
another.

In most cases data represents primarily a person's knowledge about reality and only secondarily
the piece of reality itself.

People have been using data as an aid in their daily activities for a very long time. Before the

number systems were invented or taugt, shepherds had a bag with small stones, one for each sheep,
which they used to account for them.

17

2.2 Definition of Information

The concept of information is more difficult to define in one single sentence. It is easier to describe
some of its important properties. Information exists only in the mind of a human being as a part of
that person’s mental frame of reference. By a frame of reference, we mean the collection of
concepts, definitions, laws of logic, empirical laws and perceived, deduced or deducible knowledge
belonging to the mind of that reference person P at a particular time. A person’s frame of reference
will change continuously, depending on what new knowledge he/she acquires, and what is currently
in focus in his/her conscious mind.

data message

Human Mind v

concept interpretation interpretation
defimtions rules

conceptual
message

Graphical syntax:

v D Representation

previous derivation

knowledge Process

iy

updated
knowledge

Figure 1. Transformation of data into information. From [Sundgren 73] page 24.

Infological theory has its roots in Borje Langefors” work [Langefors 66][Langefors 93]. A major
contribution to the understanding of the nature of information and data in the context of
communication with humans is concisely expressed in his infological equation:

(EQ 1) I = 1i(,S,0)

where | is the information (or knowledge) produced from the data D and the pre-knowledge S of a
person, by the interpretation process i during the time t. In the general case, S in the equation is the
result of the total life experience of the individual.

This theory was later refined in [Sundgren 73], and adapted to the 1990's main stream scientific and
commercial software supported theory of object-orientation in [Johansson 96]. That thesis presented
a framework for measuring information quantity in a unit (e-constellations) that is close to the
underlying representation in which humans store and index information in their brains [Appendix
B].

18

Chapter 3 The Role of OOCASE in the Software
Development Process

A skilled actor can play many roles. The extent to whether the performance is perceived as an excellent
experience, depends on how well the actor knows the role and it's purpose

[The Poet]

The features of OOCASE, such as the ability to work with very large object-oriented information models has its
roots in the tool's history. The special scale up and productivity requirements forced it to focus on a practically
working core theory. Whereas many other CASE tools originated from the need to document existing large
software systems in a graphical way, OOCASE had the privilege of being the origin of the design specification of
whole systems.

OOCASE is not restricted to large scale applications. The productivity benefits of model driven source code
generation start to pay off already when developing small databases with around 10 tables/classes. The benefit of
building a new application on other reusable core model modules that provide specific functionality such as
persistence, timestamping, quality assurance, version management, that are already supported by a range of tested
well working source code generators, saves plenty of “reinventing the wheel" basic strait forward programming
efforts that are already automated by source code generators.

Thus more of a developer teams' time and effort can be allocated to "high value" activities with regards to
functionality and productivity of end users.

3.1 Brief history of OOCASE

OOCASE has its roots in the late 1980's and early 1990's. In those times the "patterns of thinking" and
understanding of information systems development met with leading reasearch in software development and
formed new ways of thinking that set foundations for great leaps in software development productivity.

Concepts that had been discovered and rediscovered almost everywhere where larger software systems were
developed now became widely published. Some agreement on common vocabulary and terms started to form in
the literature and commercial development tools.

Those were the times of 4'th generation programming languages’, and vendors and users of Computer Aided
Software Engineering (CASE) tools were developing new markets.

There was however a gap in the CASE markets in the area where main stream commercial databases met with
computer aided design (CAD) tools. The software tools at that time had been developed by groups with different
end user requirements. The database groups were focusing on masses of textual business data, whereas the CAD
groups were focusing on graphical drawings of mechanical and electrical designs.

7 Programming Languate Generations: 1%) = numeric machine code, 2") assembly language, 3) languages like Pascal, C, ADA, etc.

19

Large electrical and machienery engineering firms had a need to integrate large amounts of business and CAD
data in their information flows, and that job was done on a case by case project basis by a new wave of software
application consultancy businesses.

The idea of an integrated product model (PM) that described all aspects of these large engineering firms' products
and how to build such systems with the CASE tool approach began to form.

3.2 Product Modeling Systems

A product modeling system is a computer-integrated development environment for a specific class of advanced
products. A PM-system consists of a product model database which is interfaced with CAD-applications that
support graphical designs of engineering models, graphical user interfaces for browsing and modification of the
object structures in the product model, and computer aided engineering (CAE)-applications that make engineering
calculations on the models.

Figure 2 shows the approach taken to manage the software engineering of product modeling systems. The idea is
to maintain a high-level PM-system design specification in the form of an object-oriented CASE model in a meta-
database; in the early 1990's commonly called data dictionary.

System development cycle

Syetem deel
ok yeterm design

de;mp' Production
o8 OOCASE syatsm

Uszer evaluation
Product ¢

Prototype
gyetem

expert
Development- S yatern -
. denigner
stem s L
v i Data-
Dictionary

client
CAD code gereraor code generator
dambane- CAF-application
inplementation interface
client
client

applications

"

PMS
Product model
database
browser
BETVET

Different user categories

Figure 2. Software development approach for product modeling systems

The OOCASE DomainModel of the objects to be managed in the product model database is developed in
cooperation with product-, CAD-, and CAE-application experts.

The software development approach for product modeling systems works as follows.

20

Most of the source code for the PM system implementation is generated automatically, using SQL-based source
code generators. The development platform generates database schemas with stored procedures and triggers that
provide a high level interface for application program interaction with product models. It also generates browser
applications for form-based interaction with product model data, and interface modules in the native application
development language of a CAD-system. Through these, a CAD application developer has access to the product
models in the database on an abstraction level that is natural for an engineer.

By automatic generation of most of the surrounding OOCASE-model dependent software, changes in the model
can quickly be implemented in a prototype system and evaluated by experts and end users.

The System development cycle depicted in the upper right corner of Figure 2 consists of:
1) System design that is modeled in OOCASE and maintained with the help of the DataDictionary.

2) Creation of a prototype system where the code generators deliver the source code that directly depend on
the design of the DomainModel for the PM system, which may change in each iteration.

3) User evaluation, where the users model their products with the functionality provided by the PM-system
prototype, give feedback on functionality and performance, get inspired and deliver new lists of wishes and
requirements, which are collected and taken into the next System design iteration.

4) If the users are satisfied with the functionality of the PM-system, it is taken into production on a system
platform that can handle the load of a full user base and lives up to the requirements of a production system.
Which are maintenance requirements with regards to regular backup procedures, bug-reports, user help-
desk support, basic introductory education of new users, etc .

21

Chapter 4 The Meta Model of OOCASE

A life shapening peak experience for a software developer is the first time experience of
implementing a system that can implement itself.
[The Poet]

Manual author's comment: From FORTH to Heaven. Heaven from which you can see SPACE and
with your previous experience get a clear hunch on how to explore it.

This chaper provides understanding that is important for your productivity in OOCASE.
If you are familiar with UML class diagrams, please have a look at Figure 3 on page 28, and read
section 4.18 Graphical Syntax used in Object Model Diagrams.

The information of an application domain can be described with an information model named
DomainModel. A meta-database serves as a data dictionary database for domain models.

In the same way as a PM-database is an engineering database described by a PM-system's domain
model, the meta-database is a software engineering database, described by a meta-database's
domain model. The domain model for the meta-database is actually stored in the meta-database
itself, and has been used for generating most of OOCASE's object manipulation software, such as
internal classes and object oriented methods, software components in its browser user interface, and
the table structures of the meta-database itself.

Figure 3 on page 28 shows an object model diagram for the meta-database. It is helpful to keep a
bookmark at this page for quick reference while we explain the some of the important
characteristics of the different meta-database objects.

You can also open the DomainModel named "mmdb404e.odm™ or later versions in OOCASE, and
browse the classes and their definitions interactively.

4.1 DBObject

All metamodeldatabase objects inherit from DBObject. It manages unique key attributes for object
identifiers (highld, lowld) and time stamping attributes (dtAdded, dtModified). After the creation of
a DBObject instance, the current user’s login-identifier is recorded in the createdBy attribute. After
each modification to any attribute value within a DBObject instance, the current user’s login-
identifier is recorded in the modifiedBy attribute. In a relational database implementation of the
metamodel database, this kind of functionality can easily be implemented with triggers.

DBObject also defines attributes for quality assurance (checkedBy, dtChecked, approvedBy,
dtApproved), version and release identifiers (version, release) and full traceability to the original
object that an object was copied from (releaseBasedOn-attributes). This functionality is described in
Chapter 11 - Chapter 13

22

4.2 Element

OOCASE is conformant® with the UML standard, and has adopted it's basic superclass structure for common
model elements. An Element is a superclass of all meta classes.

4.3 ModelElement

A ModelElement is an abstract class (one without instances) that has a name and a definition attribute.

A well choosen name for a ModelElement that is comprehensible for all collaborating people in the development
process as well as expected educated end users is an invenstment that has an enourmous payback in saved
working hours for communication among collaborating people over the life cycle of the modelled software.

The definition attribute is used for defining the purpose of the model element. It's model element specific value is
used for generating documentation, help files, comments in generated source code etc. Thus spending effort on a
well formulated concentrated definition that is understandable for all involved people that will work with the
model element or instances in generated software applications will pay back over decades to come.

4.4 NameSpace

A NameSpace inherits ModelElement, and is an abstract container class that owns other ModelElements that are
identified by unique names within the NameSpace. Subclasses of NameSpace model program construct in
generated source code.

4.5 Object

Object inherits NameSpace. Meta-database objects which are created by the developer such as
classes and attributes inherit from Object. When working at an international company such as ABB,
the PM system domain models have to be coordinated between different sites in different countries.
Therefore it is useful to besides name that is inherited from ModelElement, have an alternative
name and an auxiliary name that can document names in other languages. In our case, we have used
name for English names, altName for the Swedish names, and auxName for German names.

The English names are used for source code generation. Due to name size restrictions in a wide
range of possible target software platforms such as relational databases, GUI languages, CAD
system programming languages etc, the English names should have a size less than 27 characters.
Sometimes, however, older target languages do not allow such long identifier names and then a
shortName can be used instead. The size limitation of names in the meta model database is 127
characters.

The label of an Object is frequently left blank, however in some generated applications it is used as
a compact short hand to designate a unique position withing a hierarchical part-of structure in the
same way as "4.5" is a short hand to identify this particular section in the OOCASE User Manual.

4.6 Package

This abstract class serves as a container for higher level model elements such as a Model or a Module. It is
conformant with an UML package.

8 Conformant means that model elements/meta-objects in OOCASE have a mapping to UML model elements and carry the same
information, however the names of those model elements may differ a little and the structure of the information carrying objects
may differ somewhat.

23

4.7 Model

A model is an abstract class for a self contained model that is handled as one unit. Within a generated application,
a Model can for example be saved in a separate file and the abstract Model class serves as place holder for
implementing such reusable behavioral functionality.

4.8 DataDictionary

The owned contents of a DataDictionary instance is adapted to a particular range of applications
that are defined in DomainModels that share and reuse that DataDictionary. Some DataDictionary
instances stored in the meta-database may contain the full range of imported industrial standards.
These however are typically to large for practical application DomainModel development, and are
used as reference libraries for search, copy/paste® to a development datadictionary which only
contains the datadictionary specific model elements that are used and reused in the DomainModels
under development in its particular range of applications.

4.9 DomainModel

For each application or product Modeling system implementation, there is a corresponding domain
model. Instances of DomainModel represent the “root”-object of such a domain model.

4.10 Module

The Module enables a large domain model to be structured in Modules and submodules. Only Classes and
relationships can be assigned to a module. A module typically has a 1-1 correspondence with an IDLX module
that declares the application programming interface (API) which the module provides. The API is manually
implemented in a reusable software library for a particular object oriented target language. The Module is an
information model that documents this library. In OOCASE a module does not declare imports like a package but
should be entirely self contained to simplify source code generators.

411 Class

Instances of Class hold class-related information. When generating source code for a non-
inheritance capable relational DBMS, the inheritance hierarchy is flattened, so that leaf-classes have
all their attributes stored in the same table. In such (widely industrially used) databases, only leaf
classes are relevant for generation of tables. To distinguish them from abstract inherited ones such
as DatabaseObiject in Figure 1, leaf classes have their genSqlFlag set to TRUE. The prefix holds a
two-to-six character prefix that uniquely identifies the class within a domain model. This is useful
since many named source code objects in generated code are related to a specific class. Examples of
named code objects are table related stored procedures, triggers, or user interface forms for editing
instances of a particular class. As presented in [Johansson 1996] Figure 19 on page 73, stored
procedure names such as de_insert, de_update and de_delete, are generated for the class
Department. If the name of a generated table for some reason cannot be the same as the English
name for the class, the system designer can override it by entering something in tableName.

9160713: OOCASE can currently only have one DataDictionary open at the same time, thus open the library DataDictionary, select
the DataElementTypes you need, copy them to the clipboard, then load the development datadictionary, and paste them there.
101DL is the CORBA Interface Definition Language standardized by OMG.

24

4.12 Relationship

Relationships in DomainModels are binary. The connected two classes are called class1 and class2.
For a one-to-many relationship, classl is on the one-side, and class2 on the many-side. The
relationship type, e.g. 1-1, 1-N or M-N, is stored in type. The M-N case is available if the target
platform has performance beneficial special support for it.

A relationship can be viewed from the perspective of classl or class2. The relationship is referred to
from class1 by the name specified in namelto2. name2tol is used for referencing the relationships
from class2.

A relationship also has implementation-descriptive attributes, such as cascadeDelete2. This flag tell
the code generators that if an instance on the class1-side of the relationship is deleted, then all
related instances on the class2-side should be deleted.

If you need a ternary relationship or higher, you create a class to represent that relationship and set
mustExistl and mustExist2 accordingly on the 3 or more binary relationships to the three or more
related classes to ensure referential integrity in the generated code. This well-known transformation
trick saves at least 3 times the implementation effort in source code generators for a particular target
language, and much more, if you like any serious software developer, implement full design space
and function point covering testcases for a benchmark domain model.

4.13 Attribute

A class owns a set of attributes via the relationship class_attributes. In the meta-database it is
possible to specify a defaultValue for an attribute and define if the value is mandatory i.e. NULL-
values are not allowed. The keyNumber specifies the position of a key attribute within a composite
key. Non-key attributes have the keyNumber set to zero.

The type of an attribute can hold an optional data type definition. If an attribute is connected to a
Property/DataElementType, it will receive its data type declaration via the path
Attribute.dataElementType->Property/DataElementType.DETValueDomain-
>DETValueDomain.valueDomain(implementationConcept=NULL|int64)->ValueDomain.typeDef-
> TypeDef.declarations(language=SQL92|IDL|C++|Smalltalk|...)->Declaration.declaration, where
implementationConcept selects a 32 or 64 bit platform and language is a parameter that selects a
Declaration for the programming language.

4.14 AttributeGroup

When classes inherit a large number of attributes from a deep subclass hierarchy, semantically
related attributes for the same class get scattered if they are ordered by inheritance level and name
on forms and listings. The meta-database object AttributeGroup enables a grouping according to
semantic relatedness. Each attribute group is assigned a groupld consisting of a four character code.
When selecting data from all inherited attributes for a particular class from the meta-database using
an SQL-query, the results can be ordered by groupld and name. This is very useful for providing
review listings when product experts are asked to provide comments on information content for
various classes in the DomainModel and for spacial grouping of related attributes in generated user
interface objects.

4.15 Property / DataElementType

A property is a feature that belongs to an object. While developing several larger domain models
within the same product domain, one discovers that there are attributes which appear over and over

25

again. In the domain of turbine design, the attribute article_number is a good example of this. In
such cases, it is useful to store a common definition for that standard attribute as a Property in the
meta-database. This allows several attributes to share the definition of, for instance, data type or
default value. If a company implements several PM system databases from the same meta-database,
they can easily combine data from the different databases, by joining over standard attributes.
When several domain models have been developed, a property library emerges. While developing
new domain models, company standard attribute names and definitions can be selected from the
property library and thus enforce reuse of definitions. This gives an opportunity to gain control over
diverging semantics for company information resources.

The name of the Property meta class was changed to DataElementType in 1998 to adhere to the
industrial standard IEC 61360, which containes a standardized library of thousands of properties for
electrical engineering. Later IEC 61360 was adopted by ecl@ss which is an e-business standard for
product data exchange that contains more than 17 000 standardized properties.

4.16 TypeDef

All variable and attribute implementations are based on some data type. A product Modeling system
may be implemented using several different programming languages which need to share data and
thus type definitions. A TypeDef stores a standard type definition and has a set of Declarations for
various programming languages. A signed 32-bit integer is declared as a long in C and C++, while
the name of the same data type is int in Sybase/Microsoft SQLServer’s Transact-SQL. When
generating code, especially for interface libraries between CAD-systems and databases, this kind of
data-type mapping information is necessary. The specific textual declaration of a TypeDef for a
particular programming language is stored in a Declaration object owned by the TypeDef.

In the OOCASE meta-database, there is a set of standard atomic data types defined on the basis of
the ones available in OMG's Interface Definition Language (IDL) which is specified in [CORBA
1991], and [CORBA 2012].

4.17 ValueDomain

An example of a ValueDomain is week_number. A week _number can have the TypeDef “Integer”,
and a range of values between 1 and 53, i.e. minValue = 1 and maxValue = 53. A PM system
domain model may have classes for project planning. An Article class may have a DesignActivity
class that contains the attributes start_week and an end_week. There may also be a
ManufacturingActivity class for the article’s manufacturing process, which has the same week
attributes.

Now it is possible to define the two properties start_week and end_week which both belong to the
ValueDomain week _number. Through the relationship dataElementType_attributes the attributes of
the DesignActivity and Manufacturing Activity are connected to their corresponding
Properties/DataElementTypes start_week and end_week.

Later during the domain model development, one may discover that the planned design period for
certain large scale articles may last for more than a year. Hence the domain week _number also must
include the number of the Year. All affected attributes in the meta-database can be traced through
the relationships valueDomain_DETValueDomains->DETValueDomain(implementationConcept)-
>dataElementType_DETValueDomains->Property/DataElementType and
dataElementType_attributes.

By changing the definitions in the ValueDomain, the change can be automatically propagated
through the Properties/DataElementTypes to attributes in all domain models. Using the code
generators, the product Modeling systems can be re-implemented with the new data type.

26

This section gave a short description of some central classes and relationships in the domain model
of the OOCASE metamodel database. More details are available in MetaModelDatabase_4.[0-9].[0-
9].[a-z].odm and [Johansson 1996].

4.18 Graphical Syntax used in Object Model Diagrams

The graphical notation for DomainModels are called ObjectModelDiagrams. These are an efficient
compact and practical working representation for describing classes, inheritance, attributes, and
relationships between classes. They are easy to use in seminar or team discussions and serve as
"mind maps" for accessing the detals of the DomainModel. The notation is easy to teach team
members of all kinds of knowledge domains, including people without programming experience.

In the DomainModel of OOCASE in Figure 3 on page 28, classes have their class name in bold font
in their first box. The second box contains the superclass’s name preceded by a “->”. All attributes
and relationships specified for the superclass are inherited by the class. The third box within a class
contains a list of attribute names.

The naming convention for relationships is "<name2tol> <namelto2>".

Relationships between classes have cardinality constraints telling how many instances that must
participate in the relationship on each side, specified as intervals "<min>..<max>". A “*’ as <max>
denotes infinity. A black diamond on the owner class side of the relationship denotes that instances
on the other side belong to that class. An unfilled diamond denotes that the instances on the other
side are aggregated by a class, but are “physically” owned by another relationship.

Descriptions of the notation of UML class diagrams can be found through [OMGUML]. See
[Fowler 2003] for an introduction to UML.

The design choice of using a name reference like "->Superclass™ in the graphical notation of a class
in an ObjectModelDiagram to identify the superclass of a class, is based on plain practical working
experience with large and complex object model diagrams.

In a standard UML Class Diagram an inheritance link is represented by a graphical wire with a
unfilled pyramid symbol that connects the superclass with its subclasses.

The amount of manual working time lost with graphical re-routing of inheritance links while
incrementally evolving a DomainModel with 20 or more classes, is the rationality behind the design
choice of this graphical syntax.

27

dataDictionary walueDomains

DBObject
highId dataDictionary| typelefs
lowId Def Tuel X
dtadded typelef valuelDomains o
dtModified V : Il yalueDomain DETValueDomains
alueDomain =
dtChecked TypeDef - - 0e
dtApproved -»0bject ol ae [-*Ckject
locked cardinality unitOfMessure DETValueDomain
release . valueFormat —-»Element
version syntax implementationConcept
createdBy = . cardinality i e
T typelef deplarations _ N
modifiedBy - . minValue @
checkedBy o mexTalue dataElementType | DETValueDomains
spprovedBy Declaration L1 L1
releaseBasedinHighId — "
relezseBasedOnLowId OpdecT valuelomzin values DataElementType
releaseBasedinVersion]c.language_ o ->»IECEl3e00bject
t -
relezseRasedOnBelease dziafl;:vlize Value preferredletterSymbol
— ->0bject aynonymousLetterSymboll
Flement ElusCods synonymousLetterSymbolZ
ral datzElementTypeRole
->DBCkject e ue dataType
resourceld figure
" formula
domainModel relationships 11 |DomainModel quantativelategory
ModelElement -»Model referencedClassIdentifier
—»Element i i unitdfMeasure
name domainModel modules * valueFormat
definition "‘asdat“‘i'
module submodules ce . al.ma
— = cardinality
NameSpace o |os) defaultValue
CoModelZlement Nodule domainModel] classes type
o mathMLFormila
—»Package
— [|
Oh]ECt prerix superclass_specializaticons
->NameSpace L g Q" ! o |Generalization
label module_classes ->*Element
shortMame N A
classl relationsl | .. | .. |, diseriminator
altShortlame module felationships : . - e
altName 11 Class))
altDefinition —‘ ne 0. Ij'i : subclasy generalizations
2unllame -»IECel3&0Ckbject 11
guxDefinition RE[ﬂtlUﬂShlP genSglFlag -
codeBenData —r0bject prefix dataElementType afptributes
oMol tab;;ﬂam&
Package type genfiag) &1 slass attributes
- avglardinality =
->NameSpace aggregatesltod caCard] lit
avgCardinalityl s arainatity
cascadelelatel L1 o o
mustExistl o
Model cwnsltol Attribute
~>Package maxCardinalityl -*0bject
dtSynchronized minCardinalityl classZ_felationsZ keyNumber
avgCardinalityZ e mandatory
cascadelDeletel columntame
mustExistZ cardinality
maxCardinalityl defzultValue
minCardinalityZ type
nameltoZ crdinalPositicon
nameZtol recordPosition
recordPositionl avgSize
recordPositionZ probabilityClear
avgCardinalityltoZ stdSize
probabilityClearltol defaultlg
stdCardinalityltod
avgCardinalityZtol
probabilityClearitol
stdCardinalityZtol

Figure 3.

the diagram syntax

28

Essential structures and classes in the OOCASE domain model. See 4.18 for an explaination of

Chapter 5 Domain Model Development

DomainModeling is the Art of tapping a limited group of bright minds of their great immaterial assets, and turn
their collective immaterial value product into something that can be transmitted with material means. Means that
empower and emancipate each and everyone in the group

[The Poet]

Manual author's comment: This requires a significant understanding of human beings and human nature, and the
culture that has shaped the groups' patterns of thinking. It also requires some teaching skills to make some
members see and understand the value they personally receive from the shared effort. The better you know your
team, the better you can make it perform. However you need to believe in what you are doing. Reading the
business plan of the highest ranking responsible manager is the kick you need to get started.

In order to get access to bright minds, you need to give them something they want. Being well prepared, knowing
your tools and showing by real examples that your audience are interested in, is one good way of earning trust.
Trust that opens doors as long as you can deliver.

First you need to become an expert in using your tools. One very good way to become a master of a tool, is to use
it to develop something you are severely interested in yourself. Section 5.1 gives you a framework for developing
your first application. It is very important that this application is something that delivers value to yourself, and
thus gives you a reason to use it yourself. You need feedback from using your own application to develop the
skills necessary to improve it with a rational way-of-working. Skills you can reuse when taking on larger projects.

With the practical experience of the craft internalised, you are ready to take on a realistic team.

Section 5.2 gives you the basic framework for team based DomainModel development. This is fun, exciting and
demanding. It is very helpful to have run some pure interest based team projects where all members have a
common goal that they are all excited about, and where the outcome can only add value if it succeeds, and if it
fails, it's purpose was plain teaching and practical experience that can be reused later. The team scenario delivers
useful practice with the mechanisms necessary for efficient rational feedback loops on complex design structures.

5.1 Single user application development

This scenario is for developing an application for the developer's own needs. In this case the developer fulfils all 3
roles a) domain specialist that provide the requirements of information representation needed by the knowledge
domain, b) computer specialist that implement the software solution, and ¢) end user.

Having gone through the whole development life cycle for at least one application, prepares a developer for taking
on the role of b) computer specialist in collaborative teams whose products target a particular customer or end
user group.

29

5.1.1 Reuse of modules and frameworks for new application development

Reuse is fundamental in all productive value adding businesses. Designs that work in practice and have proven
themselves in numerous tests with reality carry immaterial value that form a foundation that delivers leverage
from the start. Becoming proficient in reusing proven modules is a basis to be able to deliver to your team.

Reuse is beyond the functionality delivered by a module. It is also about reusing the preknowledge of the people
that come in contact with it.

Before building your first own application you need to aquaintain yourself with an example of an application that
you are familiar with and use in your own work. Which modules does the example application contain? Which of
those contain functionality that you can reuse and stand on to build your own application?

Study the DomainModel of the example application, both on the meta level, which is the DomainModel and the
application level, which is the application you use.

The more modules you aquaintain yourself with, the more ground you find to stand on, given that your customers
need that functionality for their business in the situation they are now. Careful preparation to move your
customers on to the next level when they are ready, is something that is worthwhile if you see more potential in
their business than they do themselves.

5.1.2 Sketching an outline of the application structure

After initial thorough studies of modules and example applications, you need to rest. Do something you enjoy.
Physical exercise that delivers adrenaline kicks and afterwards endorfine kicks is one example. Enjoy being a
human being for a while. After a good nights sleep, rested with clear thinking, just outline your design the way it
comes out.

Initially paper an pencil may be faster than working with a tool. Write down keywords in boxes, sketch
relationships, work your way down your design. Anything goes for the moment, the purpose is to deliver a
physical sketch that you can use to collect your thoughts around. Don't be self critical, just record what your mind
has come up with.

Once the ideas and creativity starts to faden, go through your design and use your tool to describe it. During that
detailing process, new thoughts will come to mind and you might have to adjust your sketches.

5.1.2.1 Application Root Object

An application must have a root object to maintain the integrity of itself. It should be something that you naturally
think of as the "master of all the details". Let the most desired functionality of the application decide what is a
useful root-object. You can always at a later stage create a new version of the application with a root-object on
some higher level.

Example 1) When OOCASE was initially developed, the DomainModel was the root object. Later when the basic
functionality started to deliver its value, the DataDictionary root object was added, while preserving the integrity
of the DomainModel with a relationship interface between Property/DataElementType and Attribute.

Example 2) DocumentDictionary started its life as a simple Excel spreadsheet containing the table of contents of a
course book and some columns calculating the page-count of each chapter, a column estimating the TimeToRead
and a column to enter the recorded ReadTime. The root-object in this case was the excel file itself, which
corresponds to a DocumentRecord in DocumentDictionary.

5.1.2.2 Names for all classes, attributes and relationships

Given the root-object, define a class for it, with a name and a definition that states its purpose. Then continue with
the "details" that are parts of the root-object. Create classes for the details and define the relationships they have
with the root-object and amongst each other. Continue on this abstraction level until you feel that you have got the
names right.

30

5.1.2.3 Definitions

Definitions are initially as much a tool for thinking as a way of documenting the design. When formulating the
definitions you will discover things that might change the way you are thinking about the design. Having thought
through the Names before starting to write definitions on a level suitable as documentation for other people, saves
plenty of rewriting work.

5.1.3 Feedback from automated checks and the team

Once a comprehensive draft of the outline of the application is ready, it is time to receive feedback on it. The
fastest way to identify well-know errors is to run automated checks. Automated checks identify common
mistakes, such as name collisions in shared name spaces or deep class inheritance hierarchies or lattices, names
violating naming conventions, forgotten definitions, to long or to short definitions, etc.

Once the errors and warnings from automated checks are corrected, the design can be shared with a team member
for feedback. A well prepared draft is much more time efficient and respectful than a sketch that requires you to
be present in real-time to explain what parts are just a preliminary non-thought-thought dump of initial thoughts,
and what parts you really want your team member!! to comment and give feedback on.

Once you have got feedback from whatever source and made adjustments to a level where you feel satisfied, it's
time to prepare the design for implementation.

5.1.4 Preparing for application code generation

Different target platforms have different declarative information requirements on the DomainModel, that depend
on the programming language of the target platform.

To be able to generate source code for a particular target platform, the DomainModel must satisfy a number of
modeling rules, in order for the source code generators to produce source code that can be compiled and executed
and while being executed will deliver the correct application programming interface (API) behaviour.

Modeling rules are implemented with a set of automated checks on the contents of the DomainModel. There are
several ways to implement Modeling rules:

1) OOCASE built-in checks, which contain the accumulated experience of common modeling errors for a range of
target platform projects and can be configured and run from the Quality Assurance, check functionality.

2) User developed SQL-query based checks, that with an SQL SELECT statement detects a known error condition
on the rows that belong to the particular domainmodel instance that is checked, and can be directly run from the
Reports->Queries interface.

Once all errors and warnings detected by the checks have been corrected, the DomainModel is ready for source
code generation.

5.2 Team based application development

This scenario applies when the roles of a) domain specialists, b) computer specialists and c) end users are held by
different people. In an efficient well practiced approach, the b) computer specialist serves as seminar leader and
teacher of the graphical notation of the ObjectModelDiagrams.

11 1f you are an experienced student and want this first learning step to get done while having fun with no strings attached, you just
recall what a number of former teachers and team members would say about your design, and include that if it was constructive
and good. Put yourself in a context that helps your imagination spin, you might be one in a million watching the final result.
Perhaps not very helpful, so focus on the goal that must be broken down into a number of steps to be achieveable, and do what is
most important given the information you have access to. Knowing or at least having a reasonable approximation of the S of your
team member will tell you if you are just bothering a person you respect, or if your asking for feedback is a win-win relationship.
Fast as a thought.

31

After an initial face-to-face meeting with the team members, where the team discuss the goal with the application,
their requirements and wishes, the work collaboration can be done from their faviorite working places via skype
or some other remote meeting platform.

5.2.1 Teaching the ObjectModelDiagram notation to domain specialists and
endusers

The DocumentDictionary application can be used as teaching example for the ObjectModelDiagram notation and
how the DomainModel represents the structure of a working application program. The DomainModel for
DocumentDictionary, the DocumentDictionary application and teaching material can be downloaded from the
web-site. It is also provided in the open source team server whose virtual machine or installation image can be
downloaded from the web site.

The domain specialists can then use the DocumentDictionary application to prepare a reading agenda for the other
team members on books, manuals etc that provide a shared knowledge pool with terms and concepts that all team
members must understand in order to communicate efficiently during the project.

The TimeToRead estimates provided by DocumentDictionary are helpful for giving each team member enough
time to read, and prepare before the next DomainModeling seminar is scheduled.

5.2.2 DomainModeling seminars and seminar web reports

On a seminar, the seminar leader walks through the domain model from the root object and down. Explain and
discuss the classes, their attributes and relationships. Take notes on the comments and discussions the team in the
audience provides. The seminar leader or her/his secretary will use the notes to update the DomainModel, change
names, structures, write in more detailed and explaining definitions of the model elements etc.

As soon as possible after a seminar, go through the notes, clarify and think about them, and then create a new
version of the DomainModel, where the feedback from the seminar is entered.

Quality assure the DomainModel by running the automated checks on check level 3D Documentation.
Use OOCASE web report, to publish the DomainModel in a browsable HTML format.

Publish it on the web-server in var/www/oocase/<domainModel>/<SemanticVersionNumber>/ and the team can
find it from the web-servers home page. The team members study the new DomainModel version, take notes on
mistakes, further suggestions for enhancements and questions they have for the next DomainModeling seminar.

The seminars go on until the team feels satisfied enough with the DomainModel to want to invest in a prototype
implementation and evaluating it's performance by building real application specific models within the prototype.

5.2.3 Concurrent Work on the same DomainModel

If all team members are comfortable with working with OOCASE, the current edition of the DomainModel can be
shared in a common datadictionary from which all members can load it, save a copy to a file, edit the copy and
synchronize their latest edits with the shared edition of the DomainModel. To be practical and efficient, this
concurrent engineering approach requires a division of responsibility in time, where only one team member at a
time takes the author responsibility for a particular Module in the model.

Project information, such as schedules, responsibilities, different types of feedback etc can be customized in a
Profile which is stored within the DomainModel itself.

32

Chapter 6 Source Code Generation

Delegating a laboursome limited task to the most trustworthy and efficient servants available, is a
skill that develops with experience
[The Poet]

A source code generator converts a DomainModel into source code the way a Compiler converts a
source code into executable machine code.

The input to this step is a DomainModel that has been checked to fullfill the ModelingRules for the
particular target language(s) for the source code generation process. Support for automated
checking is described in 12.1 Checking and Automated Checks.

Chapter 9 and 10 on page 61-76, 80-81 in [Johansson 1996] give an introduction to the high-level
concepts and benefits of source code generation.

This chapter focuses on the more practical aspects.

6.1 Overall workflow

1) Check the DomainModel for well known errors. Automated checks are available for that.

2) Once the DomainModel is error free, save a copy of the DomainModel with a unique name, so you know the
origin of the generated source code.

3) Generate the source code, or have it generated through a source code generation service.

4) Load the generated source code into your development environment, compile and test it.

6.2 OOCASE built-in Source Code Generators

The DomainModel Window in OOCASE provides a Tools->Generate menu. Here a target language can be
selected, and then a generation definition chosen that contains specific parameters for the built-in source code
generator.

One way to investigate these is to load a simple well known DomainModel, for example the DocumentDictionary
domain model and just test to generate code, and inspect the generated code.

The generation definition files (suffixed by .def) are stored in the Generate/<language>/dm subdirectory in the
OOCASE installation directory. Their structure is according to Chapter 8.

The menu Tools->Administration->Edit Generate Definition opens a generate definition file in a text editor.

33

6.3 Source Code Generation Services

This kind of service is typically handled by an implementation software specialist. The information necessary for
ordering generated source code is the information contents of a DataDictionary (.opl file), a DomainModel (.odm
file) and an identifier of the type of source code ordered.

6.4 MetaModelDatabase SQL based Source Code Generators
The principles for these are described in Chapter 9 and 10 in [Johansson 1996].

The data dictionary query program ddq takes an SQL-batch as standard input, and prints the generated source
code to standard output: Example

ddq < generate/$(SOURCE_CODE_GENERATOR_FILENAME) > $(DIRECTORY)/$(SOURCE_CODE_FILENAME)

Before ddq is called, some environment variables have to be set, that tell ddg what ODBC data source to connect
to, for executing the SQL-commands in the SQL-batch. The ODBC data source is the same DataDictionary
database that you synchronize your DomainModel with. The environment variables are set in an init-script which
is called before any source code is generated.

Typically the repeatable source code generation process of a complete application, or piece of application
functionality, is automated in a batch file that calls make with different declared targets in the order they should
be striped'? to the output source code files.

The makefile may reside in the source code generation directory, or be available in a path to a make library
directory that is set up in the init-script.

6.5 Organizing Source Code Generator Build Systems

The directory structure of a source code generation system for a particular application is organized into a source
code generation directory (SCG-directory). The description below contains variables represented by $(<variable
name>), in line with standard unix shell scripts.

Examples of variable values:
TARGETLANGUAGE = (any of the below explained values, or a custom designations)
hlp : Help system source documentation files
Isp : AutoCAD AutoLISP source code
psql : PostgreSQL source code
sgl : Microsoft SQLServer SQL source code
st : Smalltalk source code for the DomainModel object manipulation implementation

st_app : Smalltalk source code for the Application user interface classes and resources

make$ (TARGETLANGUAGE)/

12 The concept of striping comes from parallell processing where a parameter-tuned task is allocated to individual processors that do
the same task, with their specific parameters. In source code generation, typically each Class in the DomainModel that needs to
have a class adapted implementation of a standard API, whose source code can be generated with the "algorithm™ implemented in
the source code generator, adds their band or stripe of compileable source code functionality to the source code file that after
compilation by an optimizing compiler implements that class's specific behavior in machine code on the target hardware platform.
The order is important due to dependencies that the target source code compiler may have. Some compilers fail if the stream of
source code has not supplied them with all definitions they need to interpret new source code coming in from the sequential stream
originating from the generated source code file.

34

init.bat # A batch file that initializes enviromment variables for the
DomainModel ODBC data source read by ddq and PATH to
a make library directory
init # The Unix/Linux variant of the initialization shell script
generate/ # An optional directory for application specific customized
source code generators
build/ # A temporary directory for generated intermediate build scripts

TARGET SOURCE CODE DIRECTORIES
The following is for TARGETLANGUAGE = st
autocode/ # A target directory for generated loadable Smalltalk source code

The following is for TARGETLANGUAGE = sqgl or psql

storproc/ # Generated SQL stored procedures

triggers/ # Generated SQL triggers

user_storproc/ # Manually written stored procedures, where some serve as
library or framework

You may designate target directories for your own favorite languages

make_$(TARGET_FEATURE) .bat # A batch files that calls make In a sequence
or # that builds the TARGET_FEATURE
build_$(TARGET_FEATURE) .bat #

$(TARGET_FEATURE) batch files may be stored in a make library directory, made
accessible by a "set PATH=..." statement in the init.bat batch file.

The probably most productive way to get aquianted with the SQL-based source code generation method is to
study a $(TARGET_FEATURE) batch file for a familiar TARGET_FEATURE, and by tracing the code, follow
what it does and how it does it.

6.6 Using GIT for Source Code Generator Maintenance

GIT is a powerful directory structured source code version management system. Together with a suitable front-
end such as TortoiseGit, it makes geographically distributed collaborative development and maintenance of source
code generation libraries much easier.

6.7 Quality Assuring Source Code Generators with the Benchmark Domain
Model

The benchmark DomainModel was designed to cover the design space of the primitives used for developing large
scale product modeling systems. It is described in more detail in Chapter 13 of [Johansson 1996]. It is available as
an .odm file in the OOCASE program distribution. If you develop source code generators, it can be used for
testing all operations described in chapter 14 "Primitives of Domain Models" in [Johansson 1996].

6.8 Test Suites for Source Code Generators

When developing source code generators for a new language, it is convenient to use the benchmark
DomainModel as test-application. The test suite for the new language should cover the full range of
primitive operations on one selected instance of class, relationship type and attribute type of each
unique variant that these may occur in the output designspace of the intended target language.

The testsuites, once familiar with its implementation in one language, are then rather easy to
migrate to another new target language.

35

Chapter 7 Prototype Iteration

Being a listened-to and influential participant in creating your shared future with others, is the best
protection for its sustainability, since the genious of a learning and evolving team frequently excels
the genious of an individual or a for granted taken cultural, traditional or bureaucratic past.

[The Poet]

A software application development project is an iterative process. The DomainModel is the Information model
that specifies what information structures the application shall be able to serve the users with.

Since applications that deliver any added value compared to what already is available by standard applications
without the need for a development project, such information models tend to be rather complex. It is very difficult
to for human beings to in their imagination in detail forsee what they like the application to do and serve them
with. Thus developing a prototype system, that users can experiment with, and with the aid of the prototype
formulate their requirements and wishes was observed to be a much more efficient way of delivering a producton
system the users wanted and adopted into their work procedures.

Information model

Prioritizing e -— _ 4GL-programming, Code generation
Production system / \
A Y Prototype system
Suggestions ~ Education

. T 74—‘;--
Evaluation by End Users
Figure 7.1 Iterative application development process

The purpose of building a prototype system is to receive feedback from end users. In most cases a new prototype
must be delivered with an education for the end users who will evaluate it. Once they know how to operate the
user interface of the application, they can start building their information structures and fill these with real
business information. During that process they will discover if some information creation capabilities are missing
in the DomainModel, if they like the user interface, and perhaps if they need convenience functionality, such as
copying whole structures or alternative ways of having the information presented to them while pursuing their
tasks etc.

The more feedback, the better the next prototype system can become. This off-course requires users to actively
work with the prototype and record or explain their feedback so their suggestions can be collected and
implemented in the next version of the DomainModel and user interface of the next prototype system.

If the amount of feedback is large, it might be helpful to organize it and present it to the whole group of end users
and other project stakeholders, in order to under discussions identify what is most important in a priority order,
and if there are conflicts of opinion.

If conflicts of opinion are NOT IDENTIFIED, discussed and resolved at a solution that all stakeholders can
accept, it may lead to unnecessary iteration loops, where functionality is altered forth and back between the
wishes of camps of conflicting opinions. Putting conflicting issues at the bottom of the priority list, allows
resources to be put on delivering "most value first" when the next prototype system version is implemented.

36

Chapter 8 Configuration Files

On some minor things, that allows growing value to be built upon it, someone has to decide.
Once the decision is made, everyone accepts it, and nobody cares since the problem is solved.
[The Poet]

OOCASE uses configuration files for import, export, automated checks, code generation,

interactive sql queries and user role configuration.

8.1 Directory Structure

The directory structure for configuration files follow this pattern:
<action>/<format>/<model class prefix>/

For example the export definitions for CSV text for DomainModels are stored in:

Export/Txt/dm/

8.2 Text format

The general format is close to windows .ini files with the following syntax:

[<section 1 name>]

<entry 1 name> = <entry 1 value>

<entry 2 name> = <entry 2 value>

[<section 2 name>]

The first line of a configuration file contains a heading that is displayed in the user interface as
guidance for selecting a particular configuration.

When issuing an action in OOCASE, for example File->Export->Text in the DomainModel

Window, all configuration files in the directory export/txt/dm are read, and the first line in each file
is displayed in a dialog box for selection.

8.3 Macro expansion $(<paramenter name>)

To ease the maintenance of configuration files, a very simple form of macro expansion is available.

37

It follows the make file standard where a macro in the text is referenced with $(<macro name>) and
expanded with the string contents of the macro.

8.3.1 System Macros

The following macros are assigned automatically when reading a configuration file:

8.3.1.1 $(firstLine)

This macro is replaced by the first text line in the configuration file. That is convenient for setting
the title of interactive reports.

8.3.1.2 $(firstLineBeforeColon)

Is replaced by the text on the first line in the file up to the first appearing colon. This is used for
identifiers, for instance the login identifier of an automated checker, to stamp as quality assurance
mark on an object (if the checker had no complaints).

8.3.1.3 $(filename)

Is replaced by the name of the configuration file. Useful in copy-edit-test cycles with several
alternative configuration files.

8.3.1.4 $(filenameWithoutExtension)

Is replaced by the name of the configuration file, except its extension which may be .def or .mcd.
This can be used for example in:

[CONFIG]

REPORT_FILE = check$(filenameWithoutExtension).txt

8.3.2 Selection Macros

Some configuration supported operations such as the Report -> Query -> Run SQL Query..., take
objects that are interactively selected in the user interface as parameter input.
Attribute values of selected objects can be accessed in the configuration file with:

$<attributeName><selectionIndex>

for example:

$Highld1

$Lowld1l

where <selectionlndex> represent the position in the current selection. The first object has selection

receives index 1, the second 2 etc. Thus preconfigured interactive SQL queries to the meta model
database can be parameterised with attribute values from the current selection.

38

Chapter 9 Import of Domain Models

If you carry information in a language | don't speak,
and | have within translation, your value is mine to keep.
[The Poet]

Authors comment: Well you annoying genious, you have to study the copyright laws before your
all-knowing wisdom hit's the ground on this planet and destroys our economy.

True Life is given solely, to the ones who live in trust.
If life requires honesty , so be it, since it must.
[The Poet]

Hrm, the following sections describe various methods and formats to import DomainModels into
OOCASE. These have primarily been chosen by needs within projects that funded the development
of OOCASE. Thus the import functionality shall be regarded as a preview, where real paying
customer project needs has and will fund the development of the generic functionality that is
present and will be added into the product for all tool customers to use.

The way distributed parallel software development life all over the planet works today, is that
frequently the knowledge barrier and budget of a development team limits the options for what
standards and platform product supplier dialects they can support.

The teachings of the advocators of "customer lock-in" economy's "historically momentary"
monpoly economic benefits, off course has delivered a plethora of diversification of syntax and
mechanisms for communicating the same semantic information in a, as big plethora of variations as
the singing-variants of birds and wing patterns of butterflies. This off-course is no help to the united
human manufactured organism to fix global warming.

However the laws of life apparently governs uncoordinated parallel processes, so we need to ensure
we massproduce knowledgeable solvent customers who can pay for the efforts of with science
outlining and then with science hammer out the shape and implementation of this high-level
efficient self-sustaining organism whose goal is to keep our planet at a medium temperature that
serves us as human beings and ensure our quality of life, the way the best knowledge on this planet
can guide us, if we give it efficient communication capabilities, and ensure there are enought people
who can make good use of that information in actions delivering implementation.

9.1 Import ODBC

The Microsoft Open Database Connectivity (ODBC) interface is a C programming language
interface that makes it possible for applications to access data from a variety of database
management systems (DBMSs).

39

ODBGC is a low-level, high-performance interface that is designed specifically for relational data
stores. OOCASE uses these API calls to extract database schema information from an ODBC data
source on the same computer.

In a Windows operating system you can administrate ODBC data sources with the program
odbcad32.exe.

9.1.1 Import ODBC Source Schema

In the DomainModel Browser issue File->Import->ODBC->0DBC Source Schema.
A dialog box appears with a list of available ODBC data sources in the logged in users operating
system environment, as reported by standard ODBC API calls.

Select the ODBC source specified on you local computer that you want to import.

= ODBC Source Schema Import *

Pleasze select an ODBC data scurce, ODBC Data Scurce

cg400a_Z015 -
cg40Za_Z01e

cg402Zc_Z01e

cg402Zg_ 2017

dBASE Files

DocDict041 2016

DocDict050 2016

DocDict060 2016

DocDict080_Z016

DocumentDictionaryl00 2017 W

Cancel

After the odbc data source is selected, with the current "improveable " implementation, you have to
select the import definition that adapts the ODBC channelled SQL queries to the language dialects
and capabilities of the specific data source.

ﬁ-‘ DomainModel Impert X

Please select an import definition

[2] : RAccess 2016 ~
[3] : Microsoft 5QL Server 12 data type format (Domain Model) - template
[3] : PostgreSQL 9

Bccess 2013

Access2003kb - Remarks in Definition, ODBC-info in AltDefinition

BccessS7 -- Not Finished 2002-05-03

CMG IDL data type format (Domain Model) - template

Oracle 11 data type format (Domain Model) - template

Cracle 3 - Truncated definitions

Cracle & data type format (Domain Model) - tcemplate

postgresg.def

Sykbase 12.0 data type format (Domain Model) - template !
Cancel

The choices are ordered according to the level of quality assurance that has been applied on the
configurations before release of the running OOCASE implementation, where [1] means that it has

40

been tested without delivering any errors or warnings on at least one data source, [2] it has been
tested on several different datasources, [3] it has been tested on DocumentDictionary, OOCASE
and the Benchmark application, [4] It has been tested against a defined and documented
designspace, [5] it has been tested and documented on a level that a very experienced and
resourceful manager has approved it and will take responsibility and action if something goes
wrong. The status of import definitions without a [n] quality assurance marker have served their
purpose in earlier releases of OOCASE, but their quality state has not been determined on the
current release.

After the odbc data source is selected, a login dialog box appears where you have to provide the
name of the data source in the Environment field (again) and enter a User Name and Password.

ﬂ Connect to Database %
Connection Profile: |DDCUMEHtDiCtiDnEr}f‘IDD_Em ~ | | Connect |
. C |
Interface: |ODBCCDnnect|0n v| ElUES
Environment: |D|:|curr1er1tDicti|:|nar:,r‘|DD_2[v|
User Marme: |d0cumentdictiunar}r v|
Passwgrd' R s |
Delete

After that the built-in import procedures take over and do their standard ODBC-calls and from the through the
configuration gathered information produce a DomainModel with classes and attributes that represent the tables
and columns within the database. The import can serve as an initial working template for a well documented
DomainModel, that may be reimplemented on a new platform, or just serve as documentation or decision support
for the customer.

9.1.2 Add ODBC Source Statistics

This command will submit SQL-queries to the selected ODBC source to add measurements of the statistics from
an ODBC imported DomainModel as described in Chapter 4 of [Johansson 1996].

Classes: avgCardinality
Attributes: probabilityClear, avgSize, stdSize
Relationships: probabilityClear1to2, avgCardinalitylto2, stdCardinality1lto2

Due to the plentiful dialectic variants of SQL only a few are fully supported where some are
restricted to only measure avgCardinality of each class/table in the ODBC source, which is the
number of rows of a single measured ODBC source. The implementation currently follows the
"just-do-it" implementation method that frequently is the most efficient to solve a particular urgent
payed for need.

The measurement results can be visualized in the user interface of the DomainModelWindow using
the menu command View->Classes->Class Statistics, and View->Relationship->Statistics, View-
>Attributes->Attribute Statistics. When these view modes are set, the information appears on
DomainModelDiagrams, that can be userful for brief decision support while going through the
contents of databases.

41

A scan of more detailled statistics from the ODBC source, that may improve the understanding of
the data which a new DomainModel should accommodate can be made by studying the
measurement's recorded in the Profilex "ODBCSourceStatistics".

This data is visible in the GenericObjectEditor's that are enabled by View->Set Default Object
Editor Class->GenericModelElement.

The Profile attributes are distinguishable in the AttributeValues listbox of this ObjectEditor, with
lowercase first letters. Look for profile attributes prefixed with max, min, avg and std.

A sample set of the 30 most frequently occuring values of an attribute can be seen in the
Attribute.attributeVValues listbox by selecting the lowercase Profile Relationship ‘attributeValues' in
the Relationships listbox in Figure 4.

_| Attribute: preferred_name_DE — O)4
Object Edit Window Help

Highld Lowld (1197720594

Relationships

| AMappings
DtAdded | 2018-01-02 19:49:47.760 | AttributeFilters
DtModified [2018-01-02 22:19:12.208 i
Label | ||preferred_name_DE | {B:Epplngs
Mam el preferred_name_DE | DataElementType
o FMAttributes
Definition
. KeyAttributes
ODBC info) Catalog[1]: * | ProfileDetails

D:\ProgramsheclasshEClass_Mavigator313a.
Table[3]: class_L1. Column[4]:

preferred_narme_DE. DataTypeld[3]: 12.
TypeMame[6]: VARCHAR. ColumnSize[7]: 255,
BufferLenght[8]: 310, Mullable[11]: 1.

Rermarks[12]: Preferred name in German.
SCLDataTypeld[14]): 12. CharOctetLength[16]: W

ProfileMasters
ProfileValues

AttributeValues Attribute.attributeValues

Mandatory = false # | Anlage (komplett) *
max5Size = 58.0 Ancrganische Chemikalien

maxValue = Werkzeug Arbeitssicherheit, Unfallschutz

minSize = 8.0 Bautechnik

minValue = Anlage (komplett) Bergbau-, Hatten-, Walzwerk- und GieBereieinricht
MaodifiedBy = olojo Biromaterial, Baroeinrichtung, Bidrotechnik, Papet
Name = preferred_name_DE Dienstleistung

OrdinalPosition = 5 Elektro-, Automatisierungs- und Prozessleittechnik
ProbabilityClear = 0.0 Energie, Gewinnungsprodukt, Sekundirrohstoff un
RecordPosition = NULL Fahrzeugtechnik

Releace = NI ¥ Halbzeug, Werkstoff

Hauswirtschaft, Hauswirtschaftstechnik
Hilfsstoffe, Additive, Formulierungen
5.0 | Informations-, Kommunikations-, und Medientech

Attribute.maxsize
Value:

Select o Store Close

Figure 4. GenericObjectEditor displaying statistics and samples from an ODBC data source.

13 Profiles are described in Chapter 17 "Profile Extensions of the MetaModel" starting on page 77.

42

For more thorough statistical analysis of larger databases, table specific stored procedures were
generated with declarative SQL based source code generators which were compiled in to the
database server itself and delivered significant better execution performance that could be scheduled
for weekend batch runs, or executed on separate analysis servers that were feed with automated
backups from the production system.

Interactive reports from such analysises can be distributed in compiled aggregated OLAP (On Line
Analytical Processing) tools and databases, where Microsoft Access was a useful distribution
format decades ago and still is for a reason.

9.2 Import TEXT

File->Import->Text, enables import of text data arranged in a stardard comma, or tab separated table text format,
with one text file for each class of objects in OOCASE, e.g. domainmodel.txt, class.txt, attribute.txt etc.

For each such file, e.g. class.txt, each row in this text file corresponds to one instance of a class in OOCASE. Each
value in a column in the table corresponds to a particular attribute's value for the class instantiated on the
particular row. The imported text files may have column headings, that determine a mapping of values' positions
to attributes.

A text import is configured with an import definition, following the syntax of Chapter 8. In those files, each class
in a DomainModel has a corresponding section, that lists what attributes are expected to appear in the text file,
and what column headings they are mapped to in the file to be imported.

To configure a new type of text import, first use File->Import->Create Text Import Definition. A number of
questions will be asked about the format of the text data to be imported, and a defalut import configuration
generated from the metamodel of the type of model to import, e.g. a DataDictionary or a DomainModel. This
configuration can then be adjusted in a text editor. It's [CONFIG] section provides some general configuration
settings.

Each metaclass in the OOCASE DomainModel has a separate section in the import definition file that lists all
available attributes wihin that metaclass, prefixed by "att" or "rel". The "rel" prefixed columns are pairs of
relational database foreign key attributes that serve as a (rel<name2to1>Highld, rel<name2to1>Lowld) pointer to
a row identified by the corresponding relational database primary key (attHighld, attLowld) in another table and
thus implements a relationship between individual rows in the imported model.

If the need to import text occurs, it is easiest to study some examples of the import configuration
files stored in Import\Txt\Dm.

9.2.1 Model Migration between versions of OOCASE

For migration of OOCASE models to new versions of OOCASE, proceed as follows:

1) Start the old version of OOCASE and load the model(s) you want to migrate, e.g. a DataDictionary and a
DomainModel.

2) Export the model(s) in text format into a separate directory for each model. A practical directory location
convention for migrated models is to create a directory Report/dd/<DataDictionary.name> or
Report/dm/<DomainModel.name>. Use File->Export->Text, select the latest OOCASE export definition,
create the new directory and press Choose. Repeat until all models are exported into their own directories.

3) Start the new version of OOCASE. Use File->Import->Text, Select the Import Definition of the previous
version of OOCASE, select the directory of a previously exported model. Save the model with a new
name in the samples/dd/ or samples/dm directory, perhaps under a subdirectory named after the previous

43

version. If there are errors reported during the import where the cause is not a mistake, a quick way to fix
them is frequently to edit the <class>.txt files directly.

4) Use Tools->Import->Delete empty string default values. This will replace all imported empty string
attribute values with NULL values in the model. NULL values have no representation in universally
exchangeable standard tab-separated text files, and are thus represented with empty strings in these. Since
an imported model usually never has been sychronized with a metadatabase repository of the new version
of OOCASE before, it is recommended to preserve the dtModified timestamps to preserve the timestamp
when information of an object was actually changed.

5) Save the model.

6) Perhaps run File->Quality Assurance #->Check Model, to determine the quality of the imported model.

Most releases of OOCASE have predefined import text definitions from previous releases of
OOCASE. Thus File->Import will display import definitions like this:

"1 DomainModel Import .

Please select an import definition

OOCASE V1.6x Access Beport (DomainModel) [
OOCASE V1.71.6 Access Report (DomainModel)

COCASE V1.71.68 scglla Access Report (DomainModel)
OOCASE V3.23c Access Report (DomainModel)

OOCASE V3.32Zo RAccess Report (DomainModel)

COCASE V3.40as Access Report (DomainModel)

COCASE V3.40af Access Report (DomainModel)

OOCASE V3.40dd Access Report (DomainModel)
OOCASE V4.00a Access Report (DomainModel)

COCASE V4.0la Access Report (DomainModel)

OOCASE V4,02c Access Report (DomainModel)

OOCASE V4.03a Access Report (DomainModel) W
Cancel

9.2.2 Model Migration from Legacy Software Tools

The lifecycles of computer hardware and software tick at a much higher rate than the lifecycles of
expensive large scale infrastructure. Thus migrating information about the latter from a previous
generation IT infrastructure to a new BETTER?® IT-infrastructure, is significantly easier if
conducted through an intermediate format that has a from decades of practical reality battered but
still standing scientific core.

Transforming legacy IT software models to the OOCASE text format as an intermediary for
building the new software or migrating the information to a new IT-systems is much easier since

14 The Quality Assurance principles acquired from best practices on decade(s) lifetime products within Mechanical Engineering
Industry and adapted to Software Engineering are described in "Chapter 11 Quality Assurance, Version and Release Management"
starting on page 55.

15 This has with available and in practice implementable IT-solution options to do and external environmental pressure that may
derive it's pressuring goals and methods from sources captured below the knowledge barrier of experienced managers who take
their duty seriously, keeping the large context value adding production capability at prime in a difficult environment they for shure
like to improve.

16 A new IT-system should be decade(s) robust and well supported.

44

simple human readable text files are supported on all new BETTER computer and software
platforms.

The concepts in the OOCASE DomainModel for structuring information have been discovered and
rediscovered in all locations where there was a developing software industry, however with
different environmentally adapted terminology.

Most information stores developed by people whose thinking has been shaped by education from
state-of-the-art computer science and state-of-the-art long-term successful software industry
evolving under the expansion phase enabled by the mass market for personal computers, can easily
be transformed to an OOCASE model, perhaps with some Profile providing additional attributes
and relationships.

Simple text files and tables have survived longer than any complex structured in a single file
representable universal data exchange syntax format, since the latter requires a complex piece of
reading software to be ported to the new platform first.

Exporting and importing information models through various declarative- or perhaps procedural
programming implementations to a named column flat table text import format is comparatively
easy. OOCASE can handle most of those CVS or TAB separated table export formats, that use
standard byte sized character sets. In such a format, the characters that represent a column value
separation, e,g, a TAB character, and row separation e.g. a CR or LF, or CRLF, must be uniquely
used for that purpose only. Thus some exports where column values contain flowing text with tabs
and carrige returns or line feed characters, need to be preprocessed by a one-to-one substitution
mapping of ascii control characters, to uniquely identifiable string tokens, e.g. that a tab character
(ASCII 9) is replaced by the standard string token 	. Those mappings are configured in the
[CONFIG] section of an import- or export configuration.

Once the exported data files are present in a directory, a text import can begin.

In OOCASE use the File->Import->Guess Import Definition. Select an existing import definition
that matches the exported format as close as possible. OOCASE will then compare the column data
from the Legacy System export and create an import definition from that.

Use File->Import->Text, and select the newly created import definition, choose the import directory
that contains the text files and the model will be imported. Diagnostics on the import process are
written to a file named import.err, which in case the import generated errors or warnings can be
inspected at once.

In case the import needs to be adjusted, edit the Import/Txt/(dd|dm)/$(filename).def import
specification and retry the import until it works.

After the import is completed the new model file is saved in its binary format (.det or .odm).
Use Tools->Import->Delete empty string default values, according to 4) above.

45

9.3 XML

The Extensible Markup Language (XML) is a subset of SGML' that is completely described in [XML 2008].
This, on the web free for download specification, is a HTML-page that when printed fits on 57 A4 pages. It's goal
is to enable generic SGML to be served, received, and processed on the Web in the way that is now possible with
HTML. XML has been designed for ease of implementation and for interoperability with both SGML and HTML.

Due to the need for exchange of complex structured information in a standard single file format, the presence and
superior availablility of this standard in conjuncion with a mass of free or inexpensive tools for parsing and
unparsing, made XML a popular widely used standard for all kinds of structured information exchange.

XML has inherited some theoretical fussiness from SGML, for example the undecidability of wheter to use an
XML-element, e,g, <Class><Highld>1000</Highld></Class> for representing a class object with one Highld
attribute value, or if to use an XML-attribute <Class Highld="1000"></Class>. This opens up a redundant
designspace of 2" combinatorial ways of representing an element of an object of a class that contains n attributes.

Once this lack of determinism of syntax for the same semantics of in practice used XML exchange started to
generate significant problems, this was addressed by the w3c and later on compensated by XML Schema, later
called XSD, which is a kind of more precise Document Type Definition (DTD) !¢ against which an XML file can
be validated. An XML schema serves as a more precise specification of the expected structure of the transfer
format, and can be used to report errors if the structure in an XML file does not correspond to the structure
specified by the XML Schema document.

9.3.1 Import XML

The preconfigured XML import functionality is not part of the OOCASE product since most XML imports require
some manual services to adapt to a particular need. It is there as an indicator that it is possible to import XML data
and transform it into something that looks like a DomainModel. The present import XML functionality has been
used in a number of funded projects that delivered decision support to many decision makers in the form of
structured numeric and statistic information. Many times in the form of high-performance interactively navigable
and searchable decision support applications, were Microsoft Access databases were a handy distributable format
when the data volume was not to large.

The possibility to lay out the information structure of an XML document graphically on an ObjectModelDiagram
while displaying statistics about the underlying data volumes in classes, relationships and attributes was
indispensible when some projects hit the technological scope of applicability on some technology platform that
had to be migrated to BETTER database technology in order to serve it's expanding application requirements.

17 SGML, or ISO 8879:1986, "Information processing — Text and office systems — Standard Generalized Markup Language
(SGML)", www.iso.org, is a 155 page syntax specification of a textual markup language whose (somewhat theoretically unpure
non-orthogonal) expressive structuring design space and syntax elements still has a significant legacy impact on text based
exchange formats today. The purpose of SGML was having a printing format layout independent language for the text of books
and documents that authors could read and write in the text editor tools available up to the first half of the 1980's. The key
experience of the horrible inefficient physical paper format's for maintaining and distributing the LAW, was probably a trigger to
this great advancement on electronic distribution and maintenance of large volumes of important texts. Leading to enourmous
productivity gains in the publishing industry with impact on society that depend severely on the semantic content of published
texts. The reference for SGML is [Goldfarb 1990].

18 DTD, a document type definition for SGML documents, which is a structured text document defining syntax rules for how to
express concepts that follows the discovered and rediscovered meta model pattern of Class, Attribute, and binary Relationship.
And model pattern of object/instance, attribute value and pointer/foreign key/link relationship. In a SGML DTD the meta model
pattern class level named ELEMENT, ATTLIST and LINK.And model pattern of element, attribute (in the attlist), and special key
attributes named IDREF, and #<idref-value> implementing pointers to other key places in the document. Note that the ENTITY
concept used in DTD's is macro expansion, and even if frequently used to implement the declaration functionality of a Class, a
DTD ENTITY is a name for a template of text.

46

The Import XML functionality shows that it is possible to reverse engineer meta data structures out of the
exponentially explosive redundant design space of XML file representations for the same information content.
Analysis of such structures may deliver useful background information on structure and terminology requirements
and size measurement data to a design team that wants to develop or discover a, with measurable science
supported optimal, DomainModel for a non-redundant design space for structured information on the knowledge
level.

If the need arise to import metamodels or reverse engineer the information structure out of the contents of
reasonably sized XML files, the in OOCASE implemented rule-based "just-do-it"-method was used and delivered
a practically useful method for limited sizes of schema design space and data volumes.

19 The knowledge level is the abstract level above the lower symbolic level, named and made consciously aware
of by publications of Allen Newell in the Computer Science community, and shortly described in [Johansson
1996]. (The lower symbolic level is fequently with mockery nicknamed the syntactic sugar level when it has to
include structures. The mockery arises from cause of the for many of the mockers unknown inadequate logistics
and speed of biological hardware building of representations of adequeate, at the time being best available
scientific knowledge available, in the creators of the syntactic sugar formats, that are optimal with regards to use
and learning within the biological hardware of a human brain given a mass market that requires a standard to build
a uninteresting but important platform to, with scientifically proveable efficiency, share higher much more value
adding information and knowledge exchange upon). The knowledge level is represented in the human brain with
for an individual ideosyncratically developed spatio-temporal activation patterin in the neurons of the brain, that
allow the prescence of a evolved concept of a symbol focused biologically wired indexed access to other by
biological chemical programming grown biological hardware that physically transfers signal pattern of associated
concepts of symbols to enter the consciousness, thus giving an instant in itself representation of the concept of a
symbol full access to all by learning created concepts that by tilt of learned patterns-of-thinking in parallel
operating overlayed spatiotemporal patterns guide the line of thought at a cycling speed of 4-7 Hz, through the
core of the brainstem (that may trigger some important chemical mechanisms), limited by the speed of signal
transmission in the neural dendtrite and synapse communication paths that depends on the prescence of more
expensive chemical "turbo molecules" that may increase the cycling speed up to 14 Hz at an intense adrenaline or
"insight-arousal" rush.

A knowledge level, which off-course, since we are limited by our sensory interfaces and languages and what
computer symbol structures or human spatiotemporal neural patterns they require to be represented when
digesting input from the sensory system, needs some symbolic representation to be communicated between
humans or machines. Thus some cleverly designed syntax, or for the practical use efficient interaction tools are
needed to enable efficient communication of information.

Now the waste of potentially value adding brain-cycles that could be contributing to our shared increase in quality
of life, given a proper information distribution logistic free from "uneducated destructive self-interest" that just
delivers a sprawl of habitats for the powerful "ants" that know what they know, while we need a foundation that
enables the growth of higher level abstractions that are powerful enough to tell us how we shall fix the real
problems of our species and it's limited living quarters, makes a scientist angry enough to deliver a verly long
footnote that probably nobody will read, so aggression is a bad emotional index that usually just delivers a by
biology promoted puff that will go into nothingness, unless someone with in practice useful influential powers
takes a note and acts in the right time and place.

Note: This footnote was temporarily emotionally sponsored by some, in afterthought enlightened, over the authors
conduct perhaps powerful but influential anonomous people.

However life stands on the present widely distributed infrastructure however inefficient it's architecture is, so to
get something done one has to use what is present and available if it delivers any added value. Where the
understanding of what added value really is comes from a place above the knowledge barrier of most humans
living today, unless we fix the logistics involved in the education problem.

47

The import rules are derived automatically from the contents of the XML-file, however the user has to configure
where different element and attribute data shall be stored in an OOCASE model. The details are described further
in section "9.4 Create XML Import Definition" on page 49.

There are some examples of import rule specifications in .xml format in the Import/xml/<prefix>/ directories. The
XML root element in these files is <ImportRuleSpecification> and can be navigated with ta standard XML or
HTML broser that supports .xml files.

9.3.2 Import XML DTD

This feature imports the meta structural contstructs of a DTD which are element declarations
identified with the <IELEMENT ... > syntax, and attribute (definition) list declarations identified
with the <IATTLIST ...> syntax, and transform them into a corresponding DomainModel
representation in the form of Classes and Attributes.

In the SGML terminology [Goldfarb 1990] =, what constitues a DomainModel Class is collected
together by a generic identifier (Gl) that serves as a name for a meta object that ties the in the DTD
syntax's perhaps scatterable definitions of ELEMENT and ATTLIST together into a class.

An element declaration is mapped to a Class, the attributes defined in an ATTLIST type are created
below the class mapped for the ELEMENT type with the same name as the ATTLIST type.
Declared owned elements in the structure definition of an element are mapped to relationships
between the classes for the corresponding ELEMENT types.

The default naming convention for the created relationships that are defined to appear as owned by
a particular element in an XML file "(classl.name), '_owned', (class2.name), 's™'. This can be
adjusted in the import configuration under the [CONFIG] section.

All relationships are given the one-to-many type (1-N), despite some derivable but not extensive for
the given design space available syntactical contstructs for delivering cardinality constraints and
other for a declarative query language non-value adding constructs in the standardized SGML
language, with regards to value-adding information delivery and retreival application usage.

A workflow for importing a simple DTD is:

1) Select File -> Import -> XML -> XML DTD
2) Select an import configuration that matches the type of DTD you want to import.
3) Select a dtd file to import.

4) Use Tools->Utility->DomainModel->Create Main ObjectModelDiagram
5) Select and right-click on the above created Module named Main, and select *Open Diagram™

6) Sketch out an ObjectModelDiagram by selecting all Classes and Relationships in the DomainModel Window
and drag-drop them onto the ObjectModelDiagram. Arrange the layout so it becomes comprehensible to a human
being for some particular purpose.

If you tried this out on a non-simple DTD, you understand that we need to reuse some knowledge from
engineering disciplines like VLSI design and PCB layout design to get any aid from a visual 2-dimensional
representation of the design space of more complex grammars.

20 publishers Note: The lengthy footnote was abstracted to save manual page space: On the knowledge level a DTD, a reverse
Engineered Meta-Model of samples of XML files, a DomainModel and a pure scientific essence extracting infological model
describe the same concepts, however the quality and practial value of the different symbolic representation languages differ
severely along an orthogonal coordinate system of several different evaluation criteria. The author was kindly asked to publish the
original footnote in a scientific paper instead.

48

The command "Import XML DTD" also serves a tool for building a skeleton for adding XML Import Rules.

If you want to create XML import rules or statistically analyze XML files whose structure are speciified in a
DTD, importing the DTD first before using "9.4.3 Add XML Import Definition Rules from Sample XML file"
will make the declarative DomainModel expose the whole design space of the DTD.

This allows you to see which features allowed by the DTD that are not used by the XML-data in the statistically
analyzed XML files.

You have to create XML Import Rules manually for those features in the DTD that lack examples in an
instantiated XML file. Or you can create a design space spanning XML file yourself, and import it with 9.4.3 to
have the rule templates created for you. See also 9.4.6 below.

9.3.3 Post process imported CMOF model

This functionality is obsolete, but may still be required by some installations.

9.3.4 Post process imported UML 2.5 model

This functionality allows the user to transform an XML import of the XMI distribution format for UML 2.5 into
OOCASE for analysis and perhaps reuse of now widely known and used standard design patterns for software
modeling in their own products. The full modeling capability of UML is overkill for the comparatively simple
basic technical information system design and maintenance purposes that OOCASE has been optimized for over
two decades.

Very much of the modeling capability of UML addresses software behavior.

Technical information systems is a mature and well understood discipline by the specialists who work in this area.
A huge amount of standard information processing behavior can efficiently be directly inferred from the structural
information content of a DomainModel. Thus there is no need to specify that kind of behavior in a software
model, since it can be generated and documented automatically from the information declared in the
DomainModel.

Powerful declarative behaviour specification capabilities such as UML StateMachines are outside the scope of
applicability for DataDictionary and DomainModels in OOCASE.

9.3.5 Import XML Meta Model

This functionality is obsolete, but may still be required by some installations.

9.4 Create XML Import Definition

Due to the size of certain XML data sets under analysis, the approach was reengineered from using an in-main-
memory DOM? respresentation for a whole XML file to an immediate SAX parsing of larger files, while
collecting statistics and samples of XML data that is stored in a Profile within the DomainModel.

9.4.1 Create XML Import Definition

This function copies a default XML-import definition template (default.def.template) and allows the user to adapt
the configuration for a particular XML import need.

2L Document Object Model (DOM), see https://www.w3.0rg/DOM for the evolution history of this public open standard.

49

9.4.2 Edit XML Import Definition

This is a convenience function that lists the first line in all available XML import definitions in the
Amport\xml\(ddjdm)\ directory. It saves some time to locate and open the configuration file with a standard
operating system file browser.

9.4.3 Add XML Import Definition Rules from Sample XML file

This function parses an XML file and adds Classes, Attributes and Relationships to the DomainModel that
represent the occuring XML Elements and their attributes and the hierarchical element structure deriveable from
the XML file content. It also adds raw data for computing statistics and a limited sample of attribute values and
element text occuring in the XML file and stores these below each Class representing an element and Attribute
representing and XML attribute. This data collection allows the DomainModel designer quick access to fact
based decision support when choosing DataElementTypes for attributes etc.

A typical workflow? for analyzing the statistics derivable from an XML file is:
1) In the DomainModel window create an empty DomainModel and save it.
2) Use File->Import->Create XML Import Definition->Add XML Import Rules from Sample XML File
2a) Select "XML Add Rules and Statistics DTD04d Import Configuration™
2b) Select the XML file to analyze
3) Use Tools-> Utility->DomainModel->Compute Class Ranks
3a) Press Yes on setting genSqlFlag = true on all classes.
3b) Verify that the XML root element class (e.g. xmi:XMI) has class rank 1 in the report that appears.
4) Use Tools->Utility->DomainModel->Create Main ObjectModelDiagram
5) Select and right-click on the with 4) created Module named Main, and select *"Open Diagram™
6) In the opened ObjectModelDiagram window select View->Statistics
7) Select Layout -> Auto Route -> Whole DomainModel from scratch
8) Select Window->Zoom Window
8a) Study the meta-model structure of the XML file
8b) Pan the view in the ObjectModelDiagram by left-mouseclick+drag in the ZoomWindow
8c) Study the statistics for Classes, Relationships and Attributes presented in the ObjectModelDiagram

9) If the XML file has a deep and complex meta model, use File -> Page Setup -> A-2L to increase the size of the
Drawing Frame and diagram, so you can zoom in on any place in a larger meta-model structure.

9.4.4 Clear statistics from sample XML files

This command is helpful to reset accumulated statistics stored in "cardinality”, "avg"- and "std"- prefixed
attributes on Classes, Relationships, Attributes and OwnedElementRule Profile Objects, after having analyzed a
set of XML files with "9.4.3 Add XML Import Definition Rules from Sample XML file".

The statistics can be computed for an alternative set of XML files, while keeping the recorded total use of the
design space in the same DomainModel.

22 The ambition is to maintain software release adapted workflow descriptions on this level of detail in the help system of the
software. This detailed work flow example is provided in the User Manual to give new professional users a deep enough theoretic
understanding to get started with practical tests on their own.

50

9.4.5 Truncate statistics from sample XML files

Variants of the above command reduce the amount of ProfileObjects and ProfileValues that record collected
grouped and aggregated attribute value sample data counts and statistics from the imported XML files in the
DomainModel.

Examples are AttributeValue profile objects that store value and the occurenceCount for that value below each
attribute.

Quick access to data in the DomainModel that document example data of what values actually are stored in
different attributes is very useful when evaluating and deciding what implementation to use for a
reimplementation of an information system on a new target platform.

However too much such statistics can make the DomainModel impractical or inefficient to work with, so this
command can make it "lighter".

9.4.6 Edit XML Import Rule Definition from DTD Profiled Domain Model

Opens a Profile Specific Object Editor for configuring XML Import Rules with the aid of a hierarchical tree
browser.

9.4.7 Write XML Import Rule Definition from DTD Profiled Domain Model

Writes the XML Import Rules configured with "9.4.6 Edit XML Import Rule Definition from DTD Profiled
Domain Model" to a configuration xml file that can be reused by many different XML import definitions.

An XML import definition specifies which import rules should be applied in:

[CONFIG]
IMPORT_RULE_SPECIFICATION_FILENAME = < xml file that contains the import rules>

The rules are used by the internal SAX-parser to, based on the element or attribute that appears in the imported
XML stream, call configured methods that create objects in the model and set attribute values on these created
objects.

51

Chapter 10 Export of Domain Models

<Some poetry once [The Poet] has read the chapter and condensed its essence>
<Some author comments on the poetry>

Information in its essence is immaterial, however needs some representation to be worked with or serve its
purpose. There are plenty of tools with various functionalities that can be used for some job that has to be done on
an information model. Thus the ability for a tool to export information into a number of different formats that
serve different purposes is fundamental for delivering added value to a team.

A team that is skilled and free to use the best available tools given their resource constraints to reach the goal set
out in their project. Where OOCASE focuses on imformation systems that carry information for decades in a
contimously changing environment.

10.1 Binary Storage Formats

Binary storage formats are optimized for performance for a particular well understood purpose.

The DomainModel binary export formats below are examples that are optimized for various purposes that seem to
be generic for a long time ahead.

10.1.1 AutoMetaStorage

This binary representation is saved in the same optimized binary format that the software frameworks that
OOCASE and DocumentDictionary are built on save their models in.

The DomainModel or MetaModel of the AutoMetaStorage binary format carries the generic core object-oriented
information essence that is represented in infological theory, OOCASE DomainModels, OOCASE Profiles, UML
MOF, and the design of a large range of single and multiple inheritance capable object-oriented programming
languages.

One human representation syntax of this binary format is available in the DomainModel named
"MetaDomainModel<3 digit Semver 2.0 identifier without dots>_R<Release identifier with dots>.odm" in the
samples/dm/ directory.

10.1.2 C++ AutoMetaStorage

This binary representation was tuned for a framework delveloped in C++, for use in a number of applications
where the target platform is implemented in C++ and built on a set of de-facto international standard frameworks
available for C++.

52

10.2 TEXT

Exports configurable views of the DomainModel in various tabular text formats, where each object
in the model gets a corresponding row in a table where the columns in that row contain textual
representations for the objects' attribute values.

The theory behind these formats was explained in 9.2 Import TEXT",

10.3 SQL

Similar functionality as in "10.2 TEXT" however the whole configured export goes into one SQL batch file that
contains SQL insert statements. Executing this exported sql file on the target database will insert the exported
model into pre-existing SQL-tables with the table names and column names specified in the export defintion.

This is useful for information distribution through an existing database infrastructure with a DomainModel
conformant database schema, or for exporting domain models to relational databases dedicated to various types of
source code generation.

It also provides a textual file format work-around in case OOCASE can not be directly connected to a database
repository. This may be for security reasons, present organizational firewall structures, lack of compatible call
level communication libraries between the client and server operating systems and database platforms etc.

In most such cases an encrypted transfer of a zip-compressed exported OOCASE sgl-batch will solve any
immediate needs.

10.4 XML
Allows exports of OOCASE model objects in XML format.

The configuration possibilities are limited to direct one-to-one mapping between MetaModel Classes in the
OOCASE DomainModel and XML elements, attributes and element hiearrchy structure levels.

More specificly with one example:

The OOCASE MetaModel Class "Class" maps one-to-one to ONE XML element name. That means you can not
map a "Class" instance to different entity names in the exported XML file depending on other properties of that
particular "Class" instance. For example the OOCASE "Class" is used to represents both "UML Class" and
"UML Association" in a UML conformant DomainModel, but these are distinguished by the UML profile specific
attribute value xmi:type="uml:Class" and xmi:type=" uml:Association".

Such XML file transformations of entity names etc can be done in an XSLT post-processing step.
Owned "Relationships™ are represented via XML hierarchical element structure.

Referenced "Relationships" are represented with foreign key references by actual foreign key values such as a pair
of <<name2tol>Highld> and <<name2tol>Lowld> elements, where <namelto2> means the OOCASE
Relationship attribute namelto2.

Alteratively referenced "Relationships” are implemented with an XML file uniquely generated id attribute on each
element, which is (foreing-key/pointer) referenced by a ref attribute in an element representing the relationship
link.

Configuring an XML export requires experiments with real example files to figure out and become clear about all
the details about meta level and instance level etc. It is recommended to start with a very simple DomainModel
example from a domain where class names on the meta and instance level do not overlap, and explore the export
configuration design space with that "reference DomainModel".

53

10.5 XML DTD

Allows export of a DomainModel in an XML DTD format. See "9.3.2 Import XML DTD" for details on this
format.

10.6 XMl
XMl is the OMG XML MetaData Interchange format.

These export functions are "preview" and unsupported.

54

Chapter 11 Quality Assurance, Version and Release
Management

Quality Assurance carries an Ethernal Truth whatever primitive methods used to enforce it
[The Poet]

This chapter goes through the theoretical foundation of ONE mechanism that allows creative
incremental development to co-exist with the rigidity necessary to efficiently manage information
distribution in a massive parallel distributed supply chain network, where many actors are not aware
of each others existence. We name it QAEVR, for Quality Assurance with Editions, Versions and
Releases, spoken Q-A-ever.

The reason this ONE mechanism was chosen, is that it is possible to efficiently implement it on the
presently widely available theoretical core of the relational database platform, while it is much more
efficiently implemented on the object-relational or object-oriented platform. The relational database
platform has enough live intellectual capital to remain robust for decade spanning life cycles. The
preservation of relational databases is a fundamental interest of all modern governments and
businesses, since it serves as the heart pumping the information flows necessary to maintain the
prosperity of organized human life on this planet.

11.1 Purpose of Quality Assurance

Quality Assurance is an insurance investment to protect a development effort from unexpected
problems and a much higher cost to fix those problems at later stages in development,
implementation, assembly and some cases mass deployment.

Safe quality assurance procedures ensure that all predefined checks against previously occurring
and thus well know errors are done, and that this is documented in a way that ensures that no
changes are done to the checked design object after the checking is complete.

The work flow from design to delivery of objects are roughtly:

1) Create the object, or copy a previous object and modify the copy

2) Check that the object meets the quality requirements necessary for it to serve its function
3) Mark the object with quality assurance information

4) Release the object to the supply chain

The quality assurance information, if handled correctly, is a huge time and cost saver when the

object travels through the supply chain. If such information is not available when the object is
received, the customer of the object has to spend time and money on inspection and relevant testing

55

equipment to do their own quality assurance checks, if they want to be sure that the object will
serve its function in the customer's own product.

In longer value-adding supply chains, such avoidable duplicated testing costs may make the total
cost of the final assembled product unaffordable for the end user.

11.2 Purpose of Version Management

During a design and development process, objects evolve when new functionality is added and
errors or problems are corrected. This means that their properties change. In a supply chain, the
customer of an object must be able to easily tell different versions of the same design object apart
from each other, to ensure that newer versions of the object still serve the same function they are
used for in the customer's design. Newer versions of objects may have changed in a way that
requires the customer to adapt the design of the product in which the object is used, to make the
customer's product deliver its intended functionality.

The identification of different versions of an object is done by attaching a version identifier to the
object.

In complex supply chain businesses the concept of "“form-fit-and-function™ is fundamental. To
illustrate this concept, for different versions of physical objects to be interchangeable within a
particular assembled product, these objects must have a compatible form so they have physical
space to be placed in the same geometrical position within the assembly. They must fit with the
mechanical interfaces provided for securing the object in the assembly, e.g screw holes, snap in tabs
or similar. The interfaces towards the environment, for example the nozzles of a water tap or valve,
must match the physical shape of the connecting nozzles transporting the water or medium, whose
flow rate is controlled by the valve. The different versions of interchangeable objects must also
perform the same function. E.g. a VValve must shut off fluid when its handle is turned counter
clockwise to a particular geometrical position, and similar.

For immaterial information objects such as written text for information transfer from human to
human, human to machine or machine to machine, similar but abstract form-fit-function properties
apply to the object. Properties that make it serve it's function within an assembly without enforcing
costly changes of the assembly to accommodate it. For example a piece of text, such as a paragraph
of legislation, a requirement on a product design, or a program that can be executed by a human or a
machine must have a form. There are many aspects of form for text. The Language used for
expressing it's information is one of them. In immaterial products that serve a function, the
rationality aspect frequently determines the form. Few textual information objects mix different
languages, unless it's function is translation.

Fit means that the interfaces of the information object must attach correctly to the environment
within the assembled product. In text, the syntax, e.g. the rules of how the textual information shall
be expressed, must fit into the assembled product. The function of the information object must be
compatible in a way that does not require the surrounding assembly to be changed, i.e. the
environment's methods to make use of the function. This means that the interface used to make use
of or call the function within the object must fit with the interface used within the surrounding
assembly. A call or use of the function must deliver the same results, however the performance of a
later implemented version of a function may differ with magnitudes.

In software industry the concept of Application Programming Interface (API), enabled software

components and libraries delivering complex functionality to be reused in an added value chain. A
supplier of a software component could sell it to a large market of customers. By that cost-efficient

56

division of labour an added value was created, that enabled the components to be sold for a fraction
of it's development cost, given that the number of sold items delivered more income than the cost to
create, distribute and sell the software component.

For a version identifier to efficiently inform the customer, which may be a human or a machine, if
a newer version of a software component can be reused without adapting the surrounding assembly,
the version identifier must express backwards compatibility with regards to form-fit-and-function.

11.3 Semantic Versioning 2.0.0

Semantic Versioning gathers the distributed software community experience based practice into a
standard syntax that enables the form-fit-function criteria to be expressed in a version identifier for
a software component [SemVer 2.0.0].
Given a version number MAJOR.MINOR.PATCH, increment the:
1.MAJOR version when you make incompatible APl changes,
2.MINOR version when you add functionality in a backwards-compatible manner, and
3.PATCH version when you make backwards-compatible bug fixes.
Additional labels for pre-release and build metadata are available as extensions to the
MAJOR.MINOR.PATCH format.

Here you are kindly redirected to the original source document of SemVer, which you can find at:
http://semver.org/spec/v2.0.0.html.

Reading the original text and storing a copy on your computer for reference is a good investment of
your time.

A note on SemVer rule : http://semver.org/spec/v2.0.0.html#spec-item-1

1.Software using Semantic Versioning MUST declare a public API. This API could be declared in the code
itself or exist strictly in documentation. However it is done, it should be precise and comprehensive.

A DomainModel is a specification on a higher abstraction level than an API. It is a declaration and
definition of the names to use for generating a source code library that implements an API that
follows certain easy to remember naming conventions for different standard information
manipulation functions. Thus knowing the names of classes, attributes and relationships in the
domain model, AND the naming conventions for the standard object manipulation functions
delivered by a source code generator, defines the API.

From that you can infer rules like:

New version of a Class that has been given a new attribute -> increment the minor version
identifier.

New version of a Class that has deleted an attribute -> increment the major version identifier, since
the generated API to manipulate that now missing attribute is no longer available, and applications
using it will not work.

57

Chapter 12 Quality Assurance Functionality

The understanding of what really delivers Quality and how the Added-Value Prosperity is founded
on Quality, is pure self-preservation knowledge, and the foundations for morale
[The Poet]

The purpose of Quality Assurance was described in section 11.1.

Most creative developers find manual checking of their own or other peoples work booring and
time consuming. There are however some exceptions to that rule.

a) If the developer can learn something new while inspecting the design or code.

b) If the developer sees the inspection work as a teacher's mission to bring up the level of skills of
appreciated students.

c) Shared group or community professional pride in the software, and a desire to keep it beautiful in
terms of clarity and readability, efficiency, robustness and freedom from faults.

d) Some other reasons that are beyond the scope of this manual

In larger software businesses, the checking effort is frequently delegated to a Test Department, that
can hire personel with the appropriate character structure to pay explicit attention to details and get
high on hunting and finding faults.

Anyhow, budget restrictions makes such solutions impossible for smaller software companies, thus
the checking effort has to be automated as far as possible, and incrementally maintained as new
types of errors are discovered.

12.1 Checking and Automated Checks

Checking is done by following a check list. The check list is the accumulated knowledge of errors
that have occurred earlier, which can be detected by inspection of the design while focusing on
particular known and detectable fault conditions.

Checks can be seens as rules attached to a class of objects, which determine whether the values of
the properties of an instance of a class passes the check or fails to pass the check.

In a restricted information domain, that can be expressed in a DomainModel#, such checks can be
automatically derived from the DomainModel and automated.checks generated for a particular
application or product model database.

2 Since the self describing DomainModel of OOCASE is implemented in the same language that
OOCASE allows other applications to be described with and uses to generate compileable source
code with, these other applications can reuse the same checking functionality that OOCASE uses to
quality assure its own design.

58

In OOCASE and applications that build in its common frameworks, checks are declared in Model
Check Definition files with the file name extension .mcd. These mcd files are initially generated
from the DomainModel of the application, and constitute standard deriveable checks.

Here is an example of an extract from a check definition file illustrating the checks for the name
attribute of a Class in OOCASE:

2NI : Namelntegrity - ensure unique and valid names in every namespace environent
-- OOCASE model check configuration file.

-- checkXX = E : Reports an error if the check is violated.

-- checkXX = W : Reports a warning if the check is violated.
-- checkXX =M : Reports a message if the check is violated.
—-- checkXX =1 Ignores the check.

-- constxXXYY = <value> : Constant parameter YY used by check XX.

—- **** Class Check Definitions ****
[Class]

checkNameHasFirstLetterConvention = W

constNameCapitalFirstLetter = true

checkNameHasWordSeparationConvention = W

constNameWordSeparationConvention = Capital

checkNamelsSpecified = E

checkNameMatchesRegularExpression = W

constNameMatchesRegularExpression = [A-Za-z][A-Za-z0-9]*
constNameMatchesRegularExpressionMotivation = Restriction to match valid syntax of
variable names of most programming languages targetable for source code generation.
checkNameSize = W

constNameSizeMin 1

constNameSizeMax = 27

checkNamesUniqueWithinNamespace = E

MCD files follow the syntax of Configuration files described in Chapter 8.

The first line is the header that the user can see when selecting which model check definition to
apply. Then some comments preceeded by a double minus (--) that roughly explains the
conventions of the configuration file for a first time reader or user.

Each class in the domainmodel of the application has its own section, starting with a braced class
name. e.g. [Class] above, followed by the set of automated checks that can be configured to
generate an error, a warning, a message or be ignored in that particular model check definition.
The names of the checks are chosen to be self explainatory.

12.2 Check Level Structure and Checkpoints

To keep the number of variants of model check definitions down, these are organized into a check
level structure that reflects the needs of development phases, sometimes separated by checkpoints in
a typical project.

A checkpoint specifies the level of quality a specification much reach before work on the next
development phase is allowed to start. The rationality behind checkpoints is to avoid losing work
effort on implementing parts of a specification that risks becoming useless or obsolete due to later
design changes on a higher level.

59

The requirements for passing a checkpoint are there to enforce that higher level more cost
impacting designs are complete and fully agreed upon by the development team.

A full understanding of the whole of a design, frequently delivers insights how it can be simplified
by refactoring or reuse of frequently occurring structural patterns through the mechanisms of
inheritance.

A simpler design that delivers the same functionality that a more complex one does, is easier to
implement. In addition, but severely more impacting over a software life cycle, a simpler design is
easier to teach and maintain over the software's life time.

Changes in terminology have a severe impact. Frequently the right choise of names for design
objects is not apparent until the whole design can be seen in its entiety.

When using, creating or adapting a model check definition, the following baseline check levels are
used.

ﬂ Please select a check definition level x
Please select a check definition level

0=20 : Nothing - all possible checks listed, however marked to be ignored. ~
1 = 1MI : ModelIntegrity - ensure imported text models are syncronizable with a meta model database.

= ZNI : NameIntegrity - ensure unigue and wvalid names in every namespace environent.

= 3D : Documentation - definitions of appropriate size on all objects.

4MER : ModelingRules - for working automatic code generation implementation.

502 : QualitylAssurance - Complete gquality assurance and version tracking information before large scale distribution.w

Cancel

A higher check level number means higher quality. An unchecked design, for example imported
from an external system, may require significant work before it lives up to the standards of a cost
efficient life cycle of a decade surviving software.

If all possible checks are applied at once, the list of reported errors may becomes excessively large.
A strait-forward approach to just fix the errors in the sequence they are reported in the list leads to a
and very boring, inefficient and partly counterproductive use of the designer's time.

The reason is that such a list intermixes small and big issues. A fix of a small issue in the beginning
of the list, may be obsoleted when a bigger issue is fixed later in the list.

The format chosen for human identification of check levels covers the user categories ranging from
expert to rare occasion users and novices. The format is:

<check level> = <check level mnemonic> : <Check level name> - <Check level concept recall
description>2

The following sections go through the baselines of the chosen check levels, which can be adapted to
particular project and implementation needs. This is typically done by creating a .mcd file using the
baseline, appending a number or letter to the <check level mnemonic>, and the rest of the human
identification information. Then adapting which predefined checks to deliver warnings and errors,
and adapting the constants that set the parameters for the checks.

2¢ This design was dictated by the all-mighty GOD that evolved the human visual system and by that
the speed possible to achieve with the biological hardware pipeline available in a human being. If
you are interested in that and want to understand the full rationale behind this design choice, you
need 2 weeks of uninterrupted 8 hour per day studies of the books in B.

60

12.2.1 0=0 : Nothing - all possible checks listed, however marked to be
ighored.

This model check definition is a useful baseline if you just want to run a few specific checks. Starting with a
template where all checks are ignored just requires editing lines on the checks that are needed. The checklist for a
OOCASE DomainModel contains more than 2000 checks. The checklist for DocumentDictionary more than 1000
checks.

12.2.2 1 =1MI: Modellntegrity - ensure imported text models are syncronizable
with a meta model database.

Many widely established programming languages including relational database languages require their data
definition language to specify the length of text strings and value ranges of integer and floating point numbers.
This enables their language compilers to optimise data storage allocation in computer memory, and select the
fastest processor machine instructions that will do the actual computations described in the high-level
programming language.

Many languages and particularly relational database languages have constructs to prevent storage of complex
structured data that violate constraints. The purpose is to prevent entering data that can't possibliy contain any
valid or useful information.

Such language constructs serve as protection against faulty software and faulty data.

Before a product model can be stored into a particular database implementation, a passed "1MI : Modellntegrity"
check ensures that the data contained in the model actually fits into the data structures provided by the particular
database implementation and does not violate any constraints.

In a supply chain, it takes time to change present infrastructure of database and program implementations that
serve the information shipments in real time. If a new product model, whatever way it was created, passes this
check, the supplier can be sure that it will successfully be delivered through the present installed software
infrastructure. If the infrastructure has sufficient quality, which is a distributed responsibility of all actors serving
and manintaining it, where many never met or heard of each other, but unite on the shared values exposed by the
added value delivered by the design?.

12.2.3 2 =2NI: Namelntegrity - ensure unique and valid names in every
namespace environent.

A Name of an object or concept is the primary mechanism used in language to transfer meaning between a sender
and a receiver. In a software life cycle that spans decades the choice of names is essential. The meaning of a
chosen Name for an object must remain permanent in an environment where people and interfacing softwares
come and go while they evolve in their careers and lifecycles.

A well-known problem with Names is that they become overloaded. That is a Name in one particular context does
not mean or represent the same thing in another context.

To choose a GOOD name for an object, the designer must have an understanding of the full range of interacting
senders and receivers in the environment where the created software is intended to serve a function an purpose.

The choise of names requires interaction and negotiation with experts familiar with all social and technological
communities that somehow will interact with the software.

In order to have such an interaction and negotiation, all affected parties must be able to study the design and
provide their constructive comments on how to improve it.

% Something that requires an educated eye to see.

61

The 2NI check level ensures that there are no machiene detectable errors in a proposed design, before it's
evaluation starts generating the costs of human inspection and feedback.

12.2.4 3 =3D : Documentation - definitions of appropriate size on all objects.

To preserve the understanding of what a design object means in a volatile unpredictable environment, the meaning
needs to be defined in a way that serves the purpose of the software in it's predictable environment, during its life
cycle.

Given the overloading problem of names and the unpredictability of information senders and receivers interacting
with it during it's life cycle, an agreement on a definition that is judged to be understandable by all expected
interacting current and future parties is essential.

A definition is written and discussed during the creation of the design, but will be read magnitudes of more times
by a huge variety of software users, given that the design's inherent quality delivers that kind of expansion.

The 3D check level ensures that machine detectable errors are not present in a documented design proposal before
submitted for evaluation and feedback.

12.2.5 4 =4MR : ModelingRules - for working automatic code generation
implementation.

This check level has a severe impact on the implementation cost of automated source code generators.

If the designer of a source code generator can assume that the declarative model specification is fault free, the
code to capture a huge number of possible fault conditions can be skipped and development efforts be spent on
delivering the best possible performance of the generated source code with regards to all predictable situations
where the generated source code needs to communicate with humans and machienes.

12.2.6 5=5QA : QualityAssurance - Complete quality assurance and version
tracking information before large scale distribution.

This check level ensures that valid quality assurance information and version tracking information
according to SemVer has been applied to the entire model, to the level possible to detect by a
machiene.

12.3 Recording a passed check

In an application supporting Quality Assurance, all objects that inherit from DBODbject, have the
attributes checkedBy and dtChecked. These are used to record who the object was checked by and
the date-and-time stamp when the check was done. The purpose is to identify who was responsible
for the check. Stamping an object with ones identity gives a justified sense of responsibility. If the
check was incorrectly done, this will eventually show itself later in the development process when
something goes wrong due to the inadequate check and the responsible person identified and held
accountable. Being accountable is a way to ensure that the checking is done properly.

Normally these attributes are write protected, and can only be written while using a special
checking functionality to maintain the integrity of the information.

A passed manual check is recorded by storing the login identifier of the user who did the manual
check in checkedBy. Login identifiers for humans begin with a alphabetic letter.

Automated checks that are documented by a model check definition file can also be held
responsible and accountable. Thus if an object passes an automated check, the check level

62

mnemonic which serves as identifier of the model check definition is stamped onto the object in
checkedBy.

This delivers precise information to the user of a checked object what level of quality the object has.
Failures later in the process can be traced to this model check definition, and the model check
definition be updated to ensure the failure condition is detected by the automated check in the
future.

12.4 Approving an object

Approval of a design means that a person or design team takes the responsibility for it. This is a matter of
efficiency in targeting feedback ranging from error reports, suggestions for improvements, praise, credibility and
earned trust.

Usually the manager of the design team is the person that approves a design before it is released. The manager is
the person that has the best overall understanding and connectivity into the design process, its organization and
infrastructure. Targeting feedback to the manager, is usually the most efficient way to channel it to the correct
place within the development organization. An organization that in most distributed supply chains is a complete
black box for a customer.

The recording of an approval is done with the attributes approvedBy and dtApproved. These attributes are also
write protected to ensure integrity, and can only be written using special approval functionality.

In most cases the approval functionality provides access to checking information, that on a high level delivers
decision support whether to approve the design or not. The function to approve a design is usually executed from
the top hierarchical level of the design to be released.

A top manager can delegate the responsibility to approve self containing design components to middle managers
in the organization. This is rational when the design is large, and the top manager is responsible for how it all
integrates. This delegation however requires that the middle managers have the support an infrastructure to handle
incoming feedback efficiently. If this is not the case, the top-manager takes the approval of a design from a trusted
middle manager as the quality assurance stamp that it is, and overwrites those stamps with the top-managers own
stamp. This way, the "fuss" from the environment can be kept outside the internal organization, and met by people
who are skilled in dealing with it on a more frequent basis.

63

Chapter 13 Version and Release Management

How can you be sure that a black box will do what it is supposed to do?
That is a matter of earned trust delivered by cleverly managed responsibility.
[The Poet]

13.1 Editions, Versions and Releases

In creativity supporting interactive design tools, unneccesary bureaucratic procedures and
restrictions are productivity Killers, since they interrupt the designers flow and line of thought with
unnecessary details that can be fixed in a later cleanup sweep.

A creativity supporting design tool is as much an aid for thinking and exploring as a tool for
documenting the final design.

Thus the approach taken in OOCASE for version and release management is a "non-intrusive"
automatic one that goes on in the background without burdening the attention of the designer.

Make Version Make Release
~ o — I
/ Edltm 1> [/f Release \
\\ \"___ ____.-f"
e —

,/Z«

Make Edition

i R &
(new copy created)

Figure 5. The quality assurance life cycle of objects in the meta model database

All design objects have a quality assurance state depicted with ovals above. The states used here are
named Edition, Version and Release. The name of the state Edition comes from the word Edit.
Version means that the object has been quality assured and assigned a version identifier that follows

64

[SemVer 2.0.0]. Release means that the object has been quality assured to a level where it serves a
purpose to release it to a supply chain.

Most productive design work start with a copy of a model that is similar to the one the designer
wants to create.

In OOCASE and DocumentDictionary a newly created or modified object that has not been quality
assured yet automatically receives the state Edition or transits into the Edition state via the
automatic process MakeEdition. With regards to the whole model that the object participates in as a
part, this edited object is a new object version, distinct from the object version it originates from,
thus needs to be uniquely identified. The version identifier automatically assigned must be unique
and meaningful to a human being in order to be easy to work with in human thought processes.
Time is unique and meaningful, thus the time when the object transits from the Version or Release
state into the Edition state is used to uniquely identify the Edition.

When quality assurance? has been completed for an object a new version can be made. This is the
Make Version process?.

Figure 6 illustrates the quality assurance life cycle of a complex object Al. E denotes that the
quality assurance state is Edition. V that it is Version, and V & R that the version has entered the
Released state.

Eelease 1 of structure Al MakeEdition on A2 V1 = A2 El
Change request arrived for A2V1 The edition is propagated to the root object A1 V1-=A1 El
A1V
.a"---- ___.--:',.."'w,\ "-,\\.“
((EyL]) [mY]
—
| A2V1 | | A3Vl |
[A4NT | [ASV]1 |
[A4VI | [ASVI |

MakeVersionon A2 E1 & ALEL = A2 V2 AL V2 MakeRelease on AL V2 = Release 2 of structure Al
Wersions are frozen and can be checked in parallel. Eelease 1 remains in the database, but is not for new development.

AT\ AT\

A3 VI A3 VI

[AAVT | [ASVI | [AAVT | [ASVI]

2 This means checking on a level that serves a purpose for the development phase that the design currently is in. For complex
designs that need coordination of feedback amongs many actors, quality assurance also includes approval by the manager or
organizational unit that is responsible for the version of the design.

27 The Make Version process needs to be tailored depending on design phase and evolved best practice within the development
organisation around the designs that can be expressed by instances of the domain model. This may involve procedure descriptions
and rules of thumb how to allocate version identifiers, depending on the communication and information distribution needs of the
development process.

65

Figure 6. Example of quality assurance process for complex objects28

In OOCASE, the act of editing an object will automatically propagate the MakeEdition upwards the
hierarchical assembly structure up to the root object in the structure.

When the designer is confident with the new design, automated checking can be applied where all
objects in the chosen assembly structure that fail the checks are listed and can be corrected
interactively at once.

Assigning versions only makes sense when the model is shared in a distributed team, or when
branching of the development effort is necessary. E.g. keeping a quality secured "fallback™ version
if the latest development increment fails to meet its deadline or turns out to be a "dead-end".

Assigning practically useful version identifiers to large object structures is a bulk job that needs to
be guided by rationality, in order to serve its purpose. What is rational depends on how the design
and its components are used individually upwards the supply chain.

The purpose of releasing a model is distribution to the supply chain. When relational databases are
used, several releases must be able to reside in the same database. This would lead to object
identifier collisions if the same object identifiers are used as in the previous release. This is handled
by a mechanism that reassigns new unique object identifiers to all objects in the model while
ensuring that referential integrity is maintained in objects that use object identifiers as pointers to
other objects.

13.2 Version History

In a software supply chain network where the design output of one supplier node in that network is
used downstream in a distributed organization working in parallel, there is a need to track the delta
of changes between software releases.

When a new release arrives at a node downstreams, that node needs to evaluate how design
changes, new functionality and bug fixes impact their own added value software product.

Decisions must be made on what makes sense to support for their own customers up the value chain
and a benefit/cost analysis with regards to the customer value of including those changes. After that
a development project can be layed out in priority order with nessecary architectural basis first, than
features and bug fixes in benefit/cost order.

In OOCASE and DocumentDictionary the version tracking information is maintained by the
automatic MakeEdition process that is triggered as soon as an object in the state of Verion or
Release is edited. Before the edit is applied, this process stores the unique object identifier (highid,
lowid) and the version and release attributes in releaseBasedOn attributes named
releaseBasedOnHighld, releaseBasedOnLowld, releaseBasedOnVersion and
releaseBasedOnRelease and replaces the version attribute with it's new edition identifier and sets
the release attribute to null.

Thus a reference to the original for the edited object is stored in the object itself. This information
can be used to trace an object back to its original, regardless which distributed copy of the original
is used, independent of any software implementation.

28 To roughtly contretize this a bit. In the context of an OOCASE domain model, Al can be a domain model object. A2 and A3
classes and A4 and Ab5 attributes. In the context of a DocumentDictionary domain model, Al can be a document dictionary object,
A2 and A3 document records and A4 and A5 content records.

66

The object is truly immaterial, and can exist in parallel wherever it is stored. It can be uniquely
identified and version traced without a centralized repository.

A customer can edit a model from the supply chain for internal business purposes without any need
to create new releases of it, unless the customers they in turn supply require access to an accurate
model that describes the product they purchase.

In this case the customer of the original release needs to quality assure their own modified version
of the object, assign a suitable SemVer version identifier that serves its purpose for their own
customers in turn, and make a release.

To preserve the properties of a truly immaterial version traceable object, each customer in the
supply chain must generate their own globally unique identifiers for their new release.

This is ensured by a centralized legdger of serial number series that each customer in the total
supply chain network receive their unique highld identifier from.

Thus if supplier A denotes their model VV1.2.3, customer B who buys it and uses it as a component
to efficiently build added value for their own customers, can have their own SemVer compatible
version assignments, and since the unique highld of supplier A, and unique highld of supplier B
that is used when they release their added value versions of a model, identifies these version
identifiers as different since they origin from different suppliers.

The ecomomy of the collective human mind is to be considered when assigning version identifiers.
HTML 4.0 has a distinct meaning to a huge user base. SemVer allows the supply chain to append
their own version identifiers on that from their supplier as long as they follow the rules of SemVer.
It is frequently worth the while to collaborate with the supplier if the value-adding adaptation of
their product is non-backwards compatible.

This section gave a view on supply chain perspective with regards to version history. This view is
orthogonal to the topic in the next section, which deals with the part-of structure of a model.

13.3 The VersionOwnerPath

The version owner path is used to determine the hierarchical part-of structure of objects in a model
assembly when version identifiers are bulk assigned top-down in the hierarchy of an edited
structure. All objects must know how to determine who they immediately belong to in the assembly
structure, and by that be able to derive their unique path to the root object in the model.

One such structure within a DomainModel is the Module hierarchy, where Classes and
Relationships distinctly belong to a single Module, and a Module may be be a part of another
module etc. This is similar to the Package hierarchy in many programming languages and in UML.

13.3.1 Design Rules for Recursive Hierarchical Relationships

Objects in a Model may be organized into recursive hierarchies. For example a ContentRecord that
represents a chapter in the table of contents in a document may contain sections which in turn may
contain subsections etc, that are all instances of the same class ContentRecord.

67

documentRecord contentRecords

11
DocumentRecord |0

contentContainer contents

o+ o+
ContentRecord
—*LabelModelElement
D containerType
F endFage
F pagelount
F startPage

Qa 1

In relational databases and fixed file format storages, large such recursive hieararchies cause a
tremendous performance loss while loaded and stored if the nesting has to be traversed and built
while loading.

Thus the following design rules apply.

When a recursive hierarchy is needed for a Class, all objecs of that class must have ONE true part-
of owner relationship denoted by a filled diamond on the owner side in UML.

This way the whole collection of owned parts can be loaded or stored in one single table or record
scan.

The recursive structures are "simulated” by one or several aggregated 1-N relationships denoted by
an unfilled diamond in UML. These nested structures are reconstructed with direct pointers in
primary memory after all objects have been loaded from the external data source and have been
indexed by their object identifier and/or primary key.

13.3.2 Direct Aggregators

When an object is edited, the MakeEdition must be applied on the edited object all the way up to the
root of the assembly structure the way the users perceives the assembly structure. For a true owner
relationship (black diamond at the owner side), it is strait forward that an object has been edited and
become a new version when one of the components it owns has been edited.

For recursive hierarchical relationships, such as 'contentContainer_contents', if a subsection is
edited, then the section becomes a new version, and the chapter that contains this section, not just
the DocumentRecord that is the true owner of the subsection, since the user perceives the Chapter
as containing the section and subsection.

2 If you are an expert with at least 25-30 years in database industry, you know that this problem is elegantly solved by database
implementations that provide sophisticated query optimizers or elegant use of hardware support for virtual memory in a way that
makes this unneccessary. Such implemtentations are however beyond the purchase capacity and performance needs of the masses
we need to mobilize to feed the computational centers with facts. The organizational and educational investment needed to put
such advanced database implementations into profitable productive use are some career steps above the basic added value we can
deliver here. Standing on our delivery, it is much easier to take on challenges upwards the added value chain. Since you yourself
are probably forced by reality to become a manager by now, you must ask yourself what people you would like to hire. On what
level do you want to start building the added value knowledge necessary to for an new appreciated co-worker to become
productive in the use of your products? Someone who can see the difference between a good design and a brilliant one? You know
our history, and we need eyes in our young generation that can see. The end-state calculation along the current trajectory is very
important to disperse to influential people who can't see but have all potential to develop their sight. We can fix it. It's just a bug.
An attitude that fixers need to have, in order to mobilize the best parts of the legacy we are made of.

68

Thus the following rules apply:

1) If an object is and has an aggregator on the white diamond side of a recursive relationship, then
MakeEdition will trigger that aggregator to be a part of the new edition.

2) If an object has no aggregator on the white diamond side of a recursive relationship, it means that
this is a root object in the recusive aggregation hieararchy that is owned by the true owner
relationship only. Thus being the root in the aggregating recursive relationship it is this object that
propagates the MakeEdition to the shared true owner.

3) To maintain the integrity of the version owner path, the implementation must ensure that all
objects in a recursive aggregating relationship that are connected in a hierarchical assembly
structure share the same true owner=. (For example if the user interface provides the functionality to
move (by drag/drop) a ContentRecord representing a section from a table-of-contents structure
from DocumentRecord A to a table-of-contents structure in DocumentRecord B, the true owner of
this ContentRecord must also be changed to DocumentRecord B.)

30 For deeper more complex assembly hierarchies that may involve recursive version owner path loops where an object of class A
may be the true owner of an object of class B, which in turn may aggregate other objects of class A, the shared direct or indirect
owner that has no aggregators must be the same object. The in theory and practice test is to ensure a design that if an object that
participates in recursive relationships is deleted, it should leave no dangling aggregated objects behind that are not deleted strait
down forward through it's true part-of recursive ownerships. Implementations of drag-drop moves of assembly structures where the
object dragged is aggregated, need to ensure the shift of true part-of owner.

69

Chapter 14 Using a Relational Database for Model
Sharing and Distribution

<Well The Poet is eager to tell the Poet's Story>
Author's comment: I'm completely baffled. You told you that?

Back to busness again. All information need a data representation that efficiently serves a number of functions.
Roughtly, excluding some that we can not cover in this manual, these funcions are the following:

1) Persistent storage of information over time.
2) Retrieval of information in a format that serves the purpose of the task that is querying the information storage.

3) Integrity protection of the stored information against known information corruption fault cases. These are
typically coming from corrupt or malwritten programmes that enter data into the persistent storage that violates
fundamental information integrity constraints.

The theory of Relational Databases dates back to pioneering work done by IBM in the late 1960's. After a number
of landmark publications the scientifically educated workforce interested in relational database theory grew
significantly, and with it came successive series of research prototypes that evolved into commercial database
products.

Practical experience of using these products for high-volume transactions on large volumes of information stored
into tables, feed back input to further theory development that lead to higher performance and better methods for
protecting the integrity of the information. These were for example declarative specifications of constraints that
the database engine itself must uphold with automated implementations, that ensured that faulty information could
never be entered, and thus the problem was delegated to the source of the faulty information that received error
messages, without any harm being done to the stored information.

There are many in the public domain available high-quality software implementations of Relational Databases.

Even if the interactive performance is higher of some other types of open-source software for sharing and
distribution of information, the integrity protection aspect of such implementations is weaker. Their capabilities
are better suited for read-only massdistribution of preprocessed high-quality models. Where updates to the
information are channeled through a more rigorous quality assurance process than these softwares' internal
functionality can provide by itself.

Regardless if the relational database is provided as an on-demand put-on-line service in the cloud or permanent
up-and-running physical computer that idles when it has no workload, the service itself requires a number of
things before it can be deployed.

14.1 Requirements for Providing a Relational Database Service

70

This chapter is not finished yet, but will be a condensed essence of a number of database courses given at the
university and in industry.

71

Chapter 15 Reuse of Models with Copy and Paste

We fired the poet, since what he delivered on this chapter just told us he couln't contribute constructively to our
business plan. Now we are fair and respect talant when it does it's homework, so "The Poet" is welcome back
once he/she or whatever that thing is, delivers a high quality statement that speaks the essence of this chapter.

[The BOSS]
Authors comment: I'm with the BOSS. A text is a tool for thinking until it has been quality assured.

One of the largetst productivity benefits with using a CASE tool, is the possibility to reuse quality assured, well
understood, known to be good, models as baselines for new applications.

Plenty of core modules can also have functionality libraries implemented directly in target language source code
that use and build on the automatically generated source code from those modules, and provide a reuse leverage
when building new applications that share the functionality of the same module.

Reuse of well known modules also has significant benefits in the human infrastructure that creates, maintains and
uses the software and the information whose structuring and task adapted user interfaces delivers reuseable
internal knowledge models within the individuals' S.

It is much more expensive to "upgrade" the human knowledge of a whole organization or customer fleet, than
upgrading a complex software if that software is implemented with state of the art methods and technology 3.

Since the market success of the Apple Macintosh computer series in the 1980es, that made software industry
almost universally adopt the “copy/paste user metaphore” from the physical office world, stands on taking a copy
of a physical object and placing it in a clipboard. The paste action will then copy the contents of the clipboard
onto the selected target object. The copy in the clipboard remains intact, and can be pasted on other target objects.

Copying a complex piece of structured information that may contain thousands of interlinked objects according to
this user metaphore involves a number of non-obvious challenges.

To deal with those we need to understand the limitations of the biological hardware that implements our conscious
understanding of what is going on in our by us controlled working environment through what the perception of
understanding in human conscious working memory can deliver on the basis of the knowledge modules and
abstractions that a human being operating user has learned.

81 The public avareness of this insight amongst professionals in the expanding software industry during the 1980'es who drew
conclusions from the market success of operating systems working with, instead of against this built-in limitation of biological
processing hardware implementing corporate and governmental organismic life, formulated this insight standing on the best-
practice, state-of-the art laguage evolved for user interfaces at those times. One excellent example of an in practice for the software
platforms made available by the science backed up gravitational core driving the industrial software expansion at those times is
[IBM 1989]. This reference is selected because it's author kindly sponsored some student branches in Computer Science during the
1980'es, with healthy win-win relationships, that fostered groth both in access to good knowledge and a supply of students for a
future long-term sustainability oriented expanding industry that took well care of it's staff. The book provides references to the
scientific basis it needed it's staff to stand on for continuing to serve the market with high quality software products. Since the
present state of the art of the software interacts and shapes organizations and individuals, it is important to maintain the stability
and integrity of the scientific core that delivers conditions and real active expansion power for healthy long-term win-win
relationships, until the scope of applicability for that market is saturated and the income areas delivering enogh profit margins
move up the added value chain, standing on healthy established state of the art standards and it's performance beneficial biological
hardware compiled prescence in the human work force.

72

15.1 Dominance Ranking of Classes in a DomainModel

In order to efficiently automatically generate source code for copy/paste functionality within the design space of a
DomainModel, some deriveable information from the structure of the entire DomainModel needs to be pre-
computed to keep the complexity of the source code generators down.

There are three relationship types in the design space of a DomainModel. Part-Of relationships, Aggregating
relationships and Reference relationships, listed in their power-of-influence-order, to determine the rank of a class
within a DomainModel, with a dominance ranking algorithm. 32

Algorithm outline:

1) Compute part-of rank - this is a matter of modeled physical assembly structure or inherent properties of the
modeled external world when represented as information described in the language of the DomainModel.

2) Compute aggregate rank
Recursive top-loop - a self aggregating class.
Non aggregated parallel part-of peer.
Subordinate aggregate hierarchy peer.
3) Compute reference rank
Top-weight calculation (inside set)
Aggregated superordinated top-weigh calculation (inside model)
Subordination weight/negative domination weight on "dominanting" relationship paths
Statistics from actual instances of models decide

Dominates1to2 - a weight set by the designer or design team of the DomainModel.

DomainModel enclosed dominance rank of a class is the position in the sorted collection of all its classes ordered
by partOfRank, aggregateRank and referenceRank.

To transfer a subset of objects within an isolated model container to an isolated clipboard container, while
preserving all internal relationships within this subset, requires determining the boundary of this subset with
regards to the surrounding model. The multi-dimensional dominance ranking enables this boundary to be visible
by precompiled algorithms.

15.2 The Copy/Paste Metaphore and it's complication in the real world

The object-action process sequence builds on human language foundations of nouns and verbs. First you select
the object, or objects with a multiple selection, and then apply the action. In this chapter's frame of topic the
actions are Copy and Paste.

32 Dominance ranking of classes within a DomainModel is a well-known secret amongst professionals working with large scale
optimization problems ranging from autorouting of printed circuit boards to optimal shop floor planning for efficient
massproduction of a particular complex assembled product. That level of knowledge is off-course far beyound the ambitions of
this manual's important foundational step of education of appreciated software engineers towards a successful sustainable value-
adding carreer in the industry that delivers the basic foundations for our shared wealth. Anyhow the computational speed of silicon
processors, compared to what is possible to achieve by manipulating the physical world that is the real thing that is initially
accessible to human beings before developing higher level abstract thinking that can be reused in writing programs that control
what goes on in nanosecond real time in a silicon processor, tells us that this is something we need to use cleverly to deliver what
we need to create the physical items we need to change our world towards the business plan. Dominance ranking in general
depends on the knowledge domain it is applied to. So DomainModels are a good tool, to with simple examples explain the more
general principles.

73

In the context of information structures declaratively expressed with a DomainModel, there are several different
types of Copy actions. Below for simplicity of the explaination we assume that the user has selected a single
object in a model. Then the multiple selection options that are not a strait forward iteration of the single selection
action are explained in more detail.

15.2.1 Copy Object Only

This copy action copies the object in the selection only, regardless what type of relationships the selected object is
connected to other objects with. This is copy action is frequently reffered to as a shallowCopy.

This action is a very limited in its power to manipulate complex information structures, thus it is not made
available through the user interface since it does not correspond to what most users of a copy action would expect
this action would do.

15.2.2 Copy Part-Of Structure - Copy

This copy action is the default that is available for the user under the familiar label Copy. It behaves as if the root
object of a part-of structure represents it's whole, which can be verified by selecting a complex object and issue
the command Copy on it, and then use Edit->Show Clipboard, and inspect the parts of the object in the clipboard.

15.2.3 Copy Part-Of- and Aggregated Structures - Copy Aggregate

In case the DomainModel contains aggregated relationships that enable the prescence of recursive structures in a
DomainModel, the Copy Aggregate action delivers something that is more close to what the user intends with a
copy action. A typical in all domains reoccurring example is an assembly, that may contain other assemblies.

15.2.4 Copy Part-Of, Aggregated, and Upwards Dominant References - Copy
Dominant

An upwards dominant object, is an object that is owned by a shared owner higher up in the part-of hierarchy of a
selected object, whose properties are shared amongs many objects on equal hierarchical level in a part-of
hierarchy below the selected object. Examples are shared membership in various kinds of groups or categories,
that own shared attributes and resources, or reference links to particular objects outside the part-of and aggregate
substructure below the selected object.

Dominance ranking is a means to automate the algorithmic implementation of:

¢ 1) Deterministical declarative identification of the span of reach for the contents of a copy from a selected
object or multiple selection of objects.

¢ 2) Defining the categories of span of reach that the user may want to adjust for a particular copy action, to
set the closure boarder of the copy.

e 3) Deterministically defining what perhaps not complete subset of a copy that can be pasted onto a
particular selected target object.

e 4) The categories of deterministic target structure of the closure of the paste, that the user may want to
adjust for a particular paste action.

15.3 Examples for Functionality Coverage and Performance Analysis

The following examples can be tested directly with the implementations provided in DocumentDictionary and
OOCASE. They serve as evaluation pattern to be used for functionality coverage analysis and performance
benchmark evaluation of a particular implementation using instances of well known Standard Models.

74

15.3.1 Copy Part-Of Examples

DocumentDictionary: Copy Paste of DocumentRecord owning ElectronicEditions and Notes
OOCASE: Copy Paste of a Class with Attributes

15.3.2 Copy Aggregated Examples

DocumentDictionary: Copy Paste of a ContentRectord aggregating a TableOfContents substructure through the
contentContainer_contents relationship.

OOCASE: Copy Paste of Module hierarchy with Classes and Relationships.

15.3.3 Copy Dominant Examples

DocumentDictionary: Copy Paste of a Category of DocumentRecords with Category instance specific user
interacive decision of recursive depth level of related DocumentRecords traceable through Cites. Use DBLP
example.

OOCASE: Copy Paste of a GenericCategory of imported IEC61360 standard library of DataElementTypes, e.g.
RosettaNet Technical Dictionary or eclass category.

15.4 Managing Traceability with Object Identifiers during Copy Paste

The implementation used is the one described in Chapter 13 Version and Release Management. When an object or
closure deriveable from a selection is copied, each copied object receives a new unique object identifier, and the
referential integrity of the entire closure within the copy is ensured by a copy algorithm.

Since the copy within the clipboard has new object identifiers it is no longer the same object as the original, and
thus the mechanism of MakeEdition is applied to it. Briefly recalled, this means that objects in the clipboard loose
any previous stamped quality assurance information for this particular new edition, and are provided with
ReleaseBasedOn information so a trace to the original object for the copy is stored in the copied object itself.

No application specific information is updated in the copy unless the application has some implementation of a
post-copy method.

When a copy is pasted onto one or several selected target objects, their ReleaseBasedOn and Edition information
remains the same as in the clipboard, and thus provides direct trace links to the originally copied objects.

75

Chapter 16 Information Quantity Measurement

The purpose of measuring information quantity was introduced in Section 1.1 Calculation of
information quantity in a model.

16.1 Theory

The theory is well described in [Johansson 1996] in Chapter 12 Concepts and Notation from
Infological Theory (page 97-107). The mathematical practice for how to calculate information
quantity in a DomainModel is described in Chapter 14 Primitives for Domain Models (page 113 -
126).

16.2 Practise

OOCASE and the applications building on the same frameworks provide information quantity
calculation in a model through File->Calculate->Information Quantity.
The user interface is similar to that for File->Quality Assurance->Check Model.

The information quantity can be measured in the unit bit, e-constellations (EC), or documentation e-
constellations (DEC) which is an algoritmically computed approximation of the information
quantity in natural language:

e 1 BITs (e.g. a 0 or 1) according to Shannon's theory based on the number of bits allocated for the selected
TypeDef for storing an attribute value or relationship link as data in the model.

e 2 Elementary Constellations (EC) - Roughly described as the number of attribute values and relationship
links in a model or part-of substructure in a model..

e 3 Documentation Elementary Constellations (DEC) - Various configurable methods for extracting the
information quantity of text containing words and sentenses written in natural language®.

In reappearing bulk-work for a software engineer, information quantity is useful when checking
roundtrips of information distribution mechanisms involving transformation between different data
representations. DEC is practical for high-level brief checking that definitions have adequate size
for a particular documentation purpose, and quickly identifying anomalies in the documentation
volume.

Information quantity measurement can be configured in detail using configuration files.

3 To measure information quantity more precisely requires a natural language parser that can classify words for their grammatic
roles and map sentence expressions to information quantity with the aid of a quality assured grammar pattern matching database.
This database has to be verified on some agreed volume of realistic application test models from a particular knowledge domain.
The level of detail is a matter of the value of calibrating the scale for measuring the information volume expressed with a certain
language.

76

Chapter 17 Profile Extensions of the MetaModel

The blaze of speed and tuning, when geared to win the known,
is accepted by the looming, to be the final crow.

The unknown never ceases, delivering critique,

thus those who not it peases, will never be unique.

[The Poet]

Authors comment: With a well conducted domain analysis and a sequence of with real production
information evaluated prototypes, probably 95% of the average information handling needs can be
covered for the bulk-volume of information processing needs within the domain. Agreeably the
environment never stops changing, and taking care of the ripple on the surface of the bulk volume
information representation needs over decade periods, is essential for maintaining the user support
for a system.

Superior performance is quickly accepted for granted by a user community who are not into the
exceptionally delicate details and history of how to achieve it in the layers of technology that it
stands on. Human beings are tuned to react on things that annoys them and disrupt their daily
conduct. Thus meeting the user's needs with a working, cost efficient, flexible but severely
performance inefficient solution with regards to some infregently occuring tasks, will allow the
users to get that job done. And forget about that job, since users continue with the next job that most
frequently is within the boarders of applicability of the performance optimized system, and those
accumulated smooth working experiences will cover for the lost credits of that other temporarily
painful experience in the irrational human emotional accounting.

If there is no extension mechanism provided that can handle the ripple in information storage needs,
the human emotional accounting will deliver it's verdict and provide a data migration project to
some other system that until thourougly performance tested will just remain being what it is, unless
proper feedback loops are established with the new system's developers and maintainers.

With a leadership who know the value of benchmarking, resources for delivering decision support
will tell when it is time to incorporate the experience accumulated in profiles into the application
DomainModel, upgrade, migrate the information and push the ripple area to less costly levels.

The concept of profiles or DomainModel extensions has been discovered and rediscovered all over
the planet in application environments that had an efficient enough core to expand beyound it's
original scope of applicability.

17.1 Short Introduction to Profiles

A Profile is a restricted form of meta model that can be used to extend the DomainModel of an
application such as OOCASE and DocumentDictionary. Profile specific Objects, Attributes and
Relationships can be created and stored in a model that is supported by the application.

77

The purpose with Profiles is to speed up the development cycle, by allowing the user of an
application to add functionality without having to ask the software supplier for help.

The benefit is the flexibility for the user to add the functionality needed in the environment that the
user has to deal with.

The drawback is performance and non-standard heterogeneity that does not scale up very well in
larger organizations and supply chains, that need to automate their communications with software
that is available and affordable for the organizational units that carry their cost.

To the user however, in the situation the user is, having the flexibility of Profiles can have a severe
impact on productivity and action capability to deliver added value to a wide range of customers.

A well documented profile that has been used in production for some time and proven it's value can
be the efficient design specification that the software supplier needs to be able to afford the
investment of incorporating the functionality into the next version of their software product.

17.2 The DomainModel of Profiles

The DomainModel of Profiles has been discovered, implemented and rediscovered and reimplemented in parallel
by independent non-collaborating actors all over the planet where people have access to programming languages
and computers. Where the pre-requisite requirement for such a thing to happen is that these people live in an
environment where curiosity and interest are promoted and allows them to develop an eye to see the underlying
high-level patterns.

Every high-level pattern needs a concrete implementation to be expressed and communicated in the physical real
world. The Elements used to formulate this expression are meta model objects that are grounded in the users
understanding of their Names and Definitions.

In Figure 7, the layout dimension from top to bottom is going from the abstract to the concrete, that is from the
class definition level to the instance level. The left-rigth dimension is an allocation of space for placing objects on
a similar abstraction level such that it fits on the paper space.

A Model, be is a DataDictionary or a DomainModel may own one or many Profiles. A Profile owns
ClassDefinitions and RelationshipDefinitions. These definitions can be modified dynamically when the
application is running. If a user needs a new attribute on some application class, the user creates a Profile object in
the model, and a ClassDefinition for the application class that needs to be extended with an attribute. The name of
the application class to be extended is entered in the baseClass attribute of the ClassDefinition instance. Below
this instance an AttributeDefinition instance is created, given a name, definition, perhaps defaultValue and type.

In the application, only objects of class ModelElement and its subclasses can be extended with Profile specific
information. A ModelElement may own ProfileValues, which carry the profile specific attribute value in it's value
field. The ProfileValue object also needs to know what attribute it's value is supposed to represent for the
ModelElement that owns it. Thus the attributeName that the user has chosen to use for this value is stored in the
field attributeName. The definition of that attributeName is recorded in the AttributeDefinition object in the
Profile, and shared by all ProfileValues. The AttributeDefinition in the Profile is owned by the ClassDefinition
that is identified by the className, which is also stored in the ProfileValue.

34 A good geometric layout of a class diagram is arranged in a way that can be efficiently scanned by the physical implementation of
the human eye and be remembered by the biological hardware we have in the higher abstraction processing layers in our biological
hardware for recognition and processing visual sensory input during mental reasoning. Its a matter of efficient reuse of 2-
dimensional structural layout to exploit the reusable mental picture that is helpful during thinking and utilize the wast storage
capacity of the higher level processing layers of the human visual systems. See [Hubel 1988] for ideas of what shapes and
structures our eyes are optimized for seeing and recalling with mental imagery. Compare the geometrical layout of Figure 7 with
the geometrical layout of the DomainModel of OOCASE in Figure 3 and notice the reuse one of semantic meaning with geometric
location.

78

In a relational database, all ProfileValues are stored in the same table. Thus they need to know themselves what
attribute their value is supposed to represent, and which class and by that inferable subclass hierarchy they might
belong to in order to attach themselves to the correct ModelElement without excessive unnecessary search for
object identifiers in tables that for sure will not contain the right modelElement.

model_profiles

Model |”_ subclass_generalizations 2
Profile . |GeneralizationDefinition
Hodol —-*Element
-=Mode
discriminator
prc?ile_class:)e:'initicns o
- | —. H superclass gpecializations 2
profile relationshigDefinitions ClassDefinition
—=0kject %! glassDefinition_attributeDefinitions
baseClass
RelationshipDefinition AttributeDefinition
-=0bject -=0bject
detailClass defaultValue
masterClass type
nameletailToMaster
nameMasterToDetail
ishkvailakle
isVisikle
relationshipType
ownsHasterToDetail
ModelElement
profilebDetail profileMasters —=Element . modelElement profileValues
name
definition
ProfileLink ProfileValue
~*Element profileMastey profileDetails ~*Element
detailClass className
masterllass attributeName
relationshipName wralue
model profilelbjects

ProfileObject

-*ModelElement

classHame

Figure 7. The DomainModel Module for Profiles

Relationships that the user creates between objects are represented by a ProfileLink. Since all ProfileLinks are
stored in the same table, the links themselves need to know in what tables their particular master and detail may
reside to attach themselves to the correct objects. The link also needs to know what it represents, and that is stored
in the relationshipName, which is an index to the RelationshipDefinition by its name, where the user can define in
a definition what links with this relationshipName actually mean.

In a multi-user database environment where data is stored and maintained over decades by different people, it is
very important to provide definitions for ProfileElements. If this is not done, misunderstandings may lead to
unnessecary additional costs in the maintenance of the physical or software objects that are documented by a
model.

79

17.3 Comparison with UML Profiles

A quick comparison is to study Figure 12.12 on page 253 in [UML 2.5.1] and compare it with Figure 7 above.
Perhaps study the adjacent text or browse the OOCASE MetaModel in OOCASE.

80

Chapter 18 Functionality

18.1 Egoless Business

The break-through paradigm shift of Egoless programming, was the separation of a working person
from the subject matter he or she produced.

The code was no longer a primary source of personal pride, but an collectively owned delivery item
that should serve its primary purpose flawlessly.

The pride of the team maintaining code, is 1) having cleanly formatted attractive looking easy to
read source code according to an established coding standard, 2) no bugs and 3) high performance.
In that priority order.

18.2 Building Efficient Interfaces Between Huge Refactorable Knowledge
Domains - Efficient Knowledge Economy

This condensed essense section has not been written yet, but the source material is already
published in [Johansson 1996]. The principle of extracting reusable designpatterns out of a whole
piece of scientific work are also documented in other partly overlapping software engineering areas
in [Gamma et.al. 1995].

81

Chapter 19 Summary and Conclusions

The design of OOCASE has its roots in the enourmously enthusiastic software industry and academic computer
science research advances in object-oriented programming, object-oriented databases, expert systems,
programming environments, model driven software engineering and complete model driven application compilers
that exploded in a period around 1988-1992. The core highly efficient design patterns evolving during that intense
period have now been production battle tested for 30 years and plenty of practical experience has been gained
from information life in an environment evolving under Mores Law.

The core technical information science has not changed, and the DataDictionary and DomainModel language has
remained the same except for the adaptation to IEC 61360 in 1997 where Property was renamed to
DataElementType, and augmented with standard attributes to be able to import large industrial standard libraries
into the DataDictionary.

The core theory and the concepts have no competitor as simple and generic as OOCASE with the same platform
neutral capabilities amongs widely available standard programming languages.

The addition in 2015 with improved functionality for Quality Assurance with Edition, Version and Release
(QAEVR) management following SemVer 2.0, with full traceability through the releaseBasedOn(Highid, Lowid,
Version, Release) attributes and renumbering of object identifiers when issuing a new release of a model, enable
full distributed in parallell version tracking by independent organizations that know nothing about each other,
while still being able to trace the version history in distributed independently maintained repositories in any
SQL92 compatible relational database or simple TAB-separated table text files for the classes of the information
model (DataDictionary and DomainModel).

This manual is a summary of what someone who really wants to make a long-term meaningful difference needs to
know with regards to technical information that needs to be production live and maintained over decades while
hardware and software platforms and programming languages change.

82

A.References

[CORBA 1991] Object Management Group, "The Common Object Request Broker: Architecture
and Specification”, OMG Publications, http://www.omg.org

[CORBA 2012] Object Management Group, "Common Object Request Broker Architecture
(CORBA) Specification, Version 3.3", OMG Publications, http://www.omg.org

[Fowler 2003] Martin Fowler, "UML Distilled, 3rd Edition: A Brief Guide to the Standard Object
Modeling Language™, https://www.martinfowler.com/books/uml.html

[Gamma et.al. 1995] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, "Design
Patterns - Elements of Reusable Object-Oriented Software", Addison-Wesley, ISBN ISBN 0-201-
63361-2, , 1995, pp. 395

[Goldfarb 1990] C.F. Goldfarb, "The SGML handbook", Oxford University Press, 1990, ISBN 0-
19-853737-9

[IBM 1989] IBM, "System Application Architecture - Common User Access - Advanced Interface
Design Guide", International Business Machines Corp., 1989, Document Number: SY328-300-R00-
1089

[Langefors 66] B. Langefors, “Theoretical Analysis of Information Systems.”, Lund:
Studentlitteratur, 1966.

[Langefors 93] B. Langefors, “Essays on Infology, Summing up and Planning for the Future”,
Gothenburg Studies in Information Systems, Department of Information Systems, University of
Gothenburg, Report 5, Augusti 1993.

[Johansson 1996] O. Johansson, "Development Environments for Complex Product Models™, 1996,
ISBN 91-7871-855-4

[SemVer 2.0.0] Tom Preston-Werner, "Semantic Versioning 2.0.0", Semantic Versioning,
http://semver.org/spec/v2.0.0.html

[Sundgren 1973] B. Sundgren, "An Infological Approach to Data Bases", National Central Bureau
of Statistics, Sweden, and University of Stockholm, Dept. of Administrative Information
Processing, Beckmans Tryckerier AB, Stockholm 1973.

[Sundgren 1989] B. Sundgren, "Conceptual Modeling as an Instrument for Formal Specification of
Statistical Information Systems”, National Central Bureau of Statistics Sweden, 1989:18.

[UML]OMG, "Unified Modeling Language (UML) Resource Page", http://www.omg.org/uml

[UML 2.5.1] OMG, "OMG Unified Modeling Language (OMG UML) Version 2.5.1", Object
Management Group, OMG Document Number: formal/2017-12-05, December 2017,

83

[XML 2008] w3c.org, "Extensible Markup Language (XML) 1.0 (Fifth Edition) - W3C
Recommendation 26 November 2008",W3C, 2008, http://www.w3.0rg/TR/xml/ (accessed 2017-12-
19)

[The Poet] The Poet, "The virtue of successful poetry”, (under review by an unscrupulous test
department)

[The BOSS]
There is no adequate publication in the wast output that the BOSS already has made that will give
any adequate picture of who the BOSS really is.

So if you ever meet the BOSS, you will recongnize the BOSS's character traits, in that the BOSS is
the nicest person you ever meet in your life. the BOSS seems to know you better than you know
yourself. The BOSS cares about you and makes you comfortable to a level where your are able to
really explain the reason why you are visiting the BOSS. The BOSS listens, and asks you questions.
After a time in the pleasourus safe haven of being in the BOSS's nearness the BOSS signals to you
that you need to listen to what the BOSS says, and when you get the BOSS's message, you are
changed.

The change transforms you, you fly on the wings of an eagle and know exactly what to do. There is
no doubt anymore and you know your BOSS is backing you if you follow the advice the BOSS
delivered.

[The Poet] who knows exactly what The Poet's homeworKk is to get the get the grace of being
allowed to meet the BOSS again.

(now there are plenty of bosses who are encouraged by this and lock themselves up in their ivory
towers, anyhow the BOSS is ultimately implemented by our own biology with it's own history, so a
good boss knows you well and knows what to say to make you deliver on a meaningful business
plan)

84

B.References for Exceptional Students

[Card et al. 1983] S. Card, T. Moran, A. Newell, "The Psychology of Human Computer
Interaction™, Hillsdale, New Jersey: Erlbaum, 1983

[Hubel 1988] A. Hubel, "Eye, Brain and Vision", Scientific American Library, 1988

[Lindsay&Norman 1977] P. H. Lindsay, D. A. Norman, "Human information processing",
Academic Press, 1977

85

C.DomainModel of DocumentDictionary

LabelModelElement

-*HModelElement

lakel
ordinalPosition

documentDictionary categories

DocumentDictionary

loglwner logRecords_1

->Model

Category
-rLabelModelElement

Q mainCategory |subcategorigs

category_catfegorylinks

CategoryLink

—*LakbelModelElement

categoryRole

modelElement [memberOfCategories

ModelElement

documentDictionary documentRecords

[4

DocumentDictionaryLogRecord
—=5ubModelLogRecord

documentDictionary authorRecords

crossref crossrefs

AuthorRecord

—-*ModelElement

authorRecord |authorDocuments

. . AuthorDocument
DocumentRecord - documentRecord authorDocuments ->Element
->LabelModelElement authorRole
modificationDate
recordType
sourcekey ElectronicEdition
authors

. . L —=LakelHodelElement
editors documentRecord electronicEditions
title - url
iskbn accessDate
publicationType
booktitle
crossref Note

ublish documentRecord notes
Frosisher g = ->LabelModelElement
series
cdrom type
journal . documentRecord contentRecords
month contentlontainer contents
number e |“.
pages ;
rating ContentRecord
reviewid -*LabelModelElement
school containerType
tableCfContentslUrl endLine
rolume endPage
yea% pagelCount
endPage startline
pageCount startPage
startPage <>
ObjectRecord
contentReford_objectRecords —-=Element
objectType
. data
citedBy_cites Cite
-r*Element
cited citedBy citedEey D
Tabel Date Printed

2018-08-31 20:25:41

86

D.Glossary

GOOD knowledge works in practice within it's well defined scope of applicability without adverse side effects.
GOOD knowledge includes being able to identify knowledge as BAD knowledge, when that knowledge is
used outside its range of applicability. Example: 1) "Sequential search" works well in the range of 1 to 100
items. Outside that scope of applicability, 2) "Binary search” delivers higher performance. 3) "B-tree search"
outperforms "Binary Search™ where memory retrieval cost (e.g. disk block access) exceed a certain time limit.
Eploiting primary memory databases, efficient hashing, with optimization for exploiting the silicon based
virtual memory capabilities and instruction sets of advanced processors and massive parallel GPU's enable still
further improvements for fast information management applications.

GOOD Student. A good student is a person who is aware of his/her limited knowledge. Someone who can
separate knowledge from his/her own personal identity or ego and evaluate knowledge for its merits and
deficiencies within a particular area of application. A good student can study any subject and become master of
it.

87

