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Abstract
The complexity in developing high-tech industrial artifacts such as power
plants, aircrafts etc. is huge. Typically for these advanced products is that
they are hybrids of various technologies and contain several types of
engineering models that are related in a complex fashion. For power plant
design, there are functional models, mechanical models, electrical models
etc. To efficiently meet new demands on environment friendly technology,
models of product life cycles and environmental calculations must be
brought into the product design stage. The complexity and evolution of
software systems for such advanced product models will require new
approaches to software engineering and maintenance.

This thesis provides an object-oriented architectural framework, based on a
firm theoretical core on which efficient software development
environments for complex product modeling systems can be built.

The main feature of the theory presented in the thesis, is that the software
engineering models of the engineering application domain (e.g. power plant
design) are separated from software implementation technology, and that
source code for the basic functionality for object management and user
interaction with the objects in the product modeling system is generated
automatically from the software engineering models. 

This software engineering technique has been successfully used for
developing a product modeling system for turbine- and power plant system
design at ABB STAL, using state of the art database technology.

When software products of the next generation of engineering database and
user interface technology are made commercially available, a product
modeling system developed according to the theory presented in the thesis
can be re-implemented within a small fraction of the effort invested in
developing the first system.

The product modeling system was put into production in 1993. It is now
regularly used by about 50 engineers. More than 80 steam and gas turbine
plants and several PFBC power plants have been designed using the
system.
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Corrected errata, comments and minor improvements 
from the original printed version

p 72 Section 9.5 An object-oriented domain model example
This section has been adapted to describe an efficient subset of 
the industri standard UML notation for class diagrams1. One 
handy user defined compartment named <<superclass>> is 
added between the <<name>> and <<attribute>> 
compartments. Instead of taking up a whole text line with 
<<superclass>> that is the UML-practice for labeling a 
customized compartment, a small inheritance symbol " ", is 
preceding the contained superclass name(s) to save space.
This added compartment significantly eases the layout and 
readability of the UML class diagrams.

p 82 FIGURE 21. An objectmodel diagram for the meta-database. 
Changed to UML class diagram notation.

p 84 FIGURE 22. A subset of the EER-model for the meta-database.
Changed to UML class diagram notation.

p 106 (EQ 10) a mistakenly included term of  +1 has been removed.
p 108 FIGURE 31. The benchmark domain model.

Changed to UML class diagram notation.
p 135 FIGURE 39. Object model of the task description language.

This model has now several improved successors, but still 
illustrates the main ideas. The diagram notation is from 
[Sundgren 73], where 1-N relationships are shown with a fork 
entering the N-side class.

p 152 FIGURE 42. Domain model of user interface state.
Changed to UML class diagram notation.

p 183 FIGURE 44. The benchmark domain model.
Changed to UML class diagram notation.

p 216 (EQ 43) a mistakenly included term of  +1 has been removed.

1. OMG Unified Modeling Language Specification version 1.4, September 2001, Section
3.19 Class Diagram,  http://www.omg.org/cgi-bin/doc?formal/01-09-67
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1 Introduction to the Thesis

The complexity in developing high-tech industrial artifacts such as power
plants or aircrafts is huge. Typical for these advanced products is that they
are hybrids of various technologies and contain several types of
engineering models that are related in a complex fashion. For power plant
design there are functional models, mechanical models, electrical models
etc.

This thesis provides an object-oriented architectural framework, based on a
firm theoretical core on which efficient software development
environments for complex product modeling systems can be built.

The main feature of the theory presented in the thesis is that the software
engineering models of the engineering application domain (e.g. power plant
design) are separated from software implementation technology, and that
source code for the basic functionality for object management and user
interaction with the objects in the product modeling system is generated
automatically from the software engineering models.

This software engineering technique has been successfully used for
developing a product modeling system for turbine- and power plant system
design, using state of the art database technology. See chapter 8.

When products of the next generation of engineering database and user
interface technology are made commercially available, a product modeling
system developed according to the theory presented in the thesis can be re-
implemented with only a small fraction of the effort invested in developing
the first system.

1.1 Product modeling systems
A product modeling system (PMS) is a computer-integrated development
environment for a specific class of advanced products. A PMS consists of a
product model database which is interfaced with CAD1-applications that
support graphical designs of engineering models, graphical user interfaces
for browsing and modification of the object structures in the product
model, and CAE2-applications that make engineering calculations on the
models.

Figure 1 shows the approach taken to manage the software engineering of

1. Computer Aided Design
2. Computer Aided Engineering
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product modeling systems. The idea is to maintain a high-level PMS design
specification in the form of an object-oriented CASE3 model in a meta-
database.

The OOCASE model is developed in cooperation with product-, CAD-, and
CAE-application experts.

FIGURE 1. Software development approach for product modeling systems.

Most of the source code for the PMS implementation is generated
automatically, using SQL-based source code generators. Our development
platform generates database schemas with stored procedures and triggers
that provide a high level interface for application program interaction with
product models. It also generates browser applications for form-based
interaction with product model data, and interface modules in the native
application development language of a CAD-system. Through these, a
CAD application developer has access to the product models in the
database on an abstraction level that is natural for an engineer.

By automatic generation of most of the surrounding OOCASE-model
dependent software, changes in the model can quickly be implemented in a
prototype system and evaluated by experts and end users.

3. Computer Aided Software Engineering

Meta
Database

Product Model
Database

Product 
model 

browser
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1.2 Contributions
The main contribution of the thesis is the object-oriented architectural
framework. This integrates various types of software, software
development methods and different professional roles into a coherent
whole, which enables efficient development and long term maintenance of
complex product models. The framework addresses both development of
single instances of product models and the evolution of their
representations, due to changing business and technical requirements.

On the way to this contribution a few others have been achieved:

1) The integration of state of the art software engineering technology with a
theory that enables explicit numerical quantification of information content
in large and complex product models. This theory integration enables
product models from different engineering domains to be compared by the
numerical information quantity they contain. Information quantity
measurements can be used for prediction and planning. Product models that
are constructed with a formal language defined with the concepts presented
in Part III of the thesis can be compared and related to the resources needed
for their engineering. The theoretical core for the information systems
design is taken from [Sundgren 73]. His framework has been extended with
a multiple inheritance class hierarchy, distinct modeling of part-of and
refers-to relationships, and support for datatype independent attribute
declarations. The object-oriented CASE-models have a meta-model
according to our meta-database (Figure 21 on page 82). This meta-model
has simple mappings to EER4-models, an infological model (OPR5-
approach) [Sundgren 73][Sundgren 89], the entity-relationship model
[Chen 76], an object-oriented analysis models [Coad&Yourdon 90], OMT6

[Rumbaugh 91] and EXPRESS [EXPRESS 88].

2) The meta-database contains an information-oriented language for task
description that covers responsibility areas for different types of
information in a product model for different user roles. The formalisation
of both the concepts for object modeling, and the description of user tasks
enables development of user interface compilers for advanced graphical-
and form-based browsers which can be used directly in a PMS production
environment. The information-oriented task description language
(section 15.2 on page 135), is mainly based on experience gained when
using the ideas presented in [Johansson 91] for developing the product
modeling system for steam turbine and power plant system design
[Johansson 94]. Some additional motivation for introducing the concept of
roles for elementary constellation types was gained from [Reenskaug 96].

3) The formalisation of the user interface design into a user interface
software architecture (UISA). This architecture uncouples the

4. Extended Entity Relationship
5. Object Property Relationship
6. Object Modeling Technique
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representation of product models in a database from their presentation- and
interaction mechanisms in the user interface. The UISA is applicable for
traditional form-based user interfaces and advanced graphical user
interfaces. It provides a user interaction model that visualizes the
underlying theory, and enables automatic implementation of functionality
for object-based selection-, clipboard- and transaction management when
several windows displaying the same information are modified in parallel.

4) The support within the architecture for fast incremental prototype
development of large product modeling systems. This is enabled by the
clean mapping between theoretical information-oriented concepts in the
software engineering models, concepts in the database and concepts in the
user interface. The clean mapping simplifies the implementation of SQL-
based source code generators. The framework also defines how user
interaction with generated user interfaces can be logged automatically, so
that statistics from prototype usage in the log can be presented and related
to the formal description of the domain model in the meta-database. This
kind of statistics can be valuable decision support when deciding how to
improve a prototype implementation after an evaluation period.

1.3 Thesis overview and readers’ guide
The contributions of this thesis focus on development of complex object-
oriented information systems and begin in Part II.

Part I, ’Properties of Knowledge-Based Systems for Engineering’
describes concepts from knowledge-based systems development, and
provides a vision from the early 90’s that motivated the development of
the theories presented in Parts III and IV. The purpose of Part I is to give an
idea of what future knowledge engineering environments for product model
based development could be like. The material is taken from [Johansson
91]. Chapters 2-4 and 6 and are NOT needed to understand the theory
presented in the rest of the thesis. The Chapter 5, "The KBS Development
Process" describes the difference between mental models, conceptual
models, meta-models, domain models and database implementation
models.

Part II, ’Experience from Development Environments for Product
Modeling Systems’ describes ProCAD, a PMS for turbine and power plant
system design and its development platform. These systems were
developed during a five-year period in two cooperation projects with ABB
STAL. The projects provided a test of the development principles initially
described in [Johansson 91] and a refinement of tools and techniques to
practical solutions for developing PMS for complex products. Chapter 9
describes the meta-database design of the development platform, and
chapter 10 the SQL-based source code generation. Chapter 9 and
especially Section 9.7 "The meta-database domain model" are
important for understanding Part III.
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Knowledge gained from the work described in Parts I and II has been
generalized and is documented in Parts III and IV.

Part III, ’Theoretical Framework for the Information System
Platform’  introduces the concepts from infological theory that enable
exact numerical quantification of information content in product models. It
introduces a benchmark domain model that is used for explanation in the
thesis, and can be used by other researchers for comparing performance of
different user interface implementations. The final chapters describe the
information oriented task description language, and provide examples of
task descriptions from the benchmark domain model.

Part IV, ’Theoretical Framework for Object-Oriented User Interface
Configurations’  introduces the user interface software architecture, which
has been successfully used for generation of domain model-specific user
interfaces. Together with Appendix C, "User Interface Object
Characteristics", the part provides a common framework that enables
performance comparison of different user interface implementations.

1.4 Research method 
This research was conducted according to the following method:

Part I) Study of the research area and identification of the research topic.

Part II) Practice with development of the system under study. Development
of a practical solution to the research topic, and measurements of its
performance.

Parts III, IV) Formulation of a theory that enables a more precise
comparison of the systems under study.

The topic under study is efficient development environments for complex
product models. In the future, development environments and product
modeling systems of a similar performance as the one presented here
should probably be developed in-house within commercial companies.

There is a need for further standardization efforts, which must be guided by
advanced prototype implementations to become competitive. 

I believe that tools based on the theoretical framework presented here and
future derived and improved standards thereof can leverage public research
to new levels where new relevant research questions can be found that are
too general to be efficiently studied in closed industrial research
laboratories.
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1.5 Motivation for the work
My intension with this work is that it should be a significant contribution to
the development of environment-friendly technology for complex products.

The complexity that engineers must handle when they in addition to
developing a high quality product, also have to take the life cycle of the
product with regards to environmental influences into consideration is
huge. New types of knowledge must be incorporated into the design
processes and new types of software must be developed to support
environmental calculations.

Complexity is a major enemy against the development of long term
successful software. Advanced software needs to be maintained - work
which requires advanced software engineering skills, which is a scarce
resource that many times is used to its limits. I hope that these new
software development techniques will improve the working situation for
engineers in software industry.

Acknowledgements
This research has been funded by the Swedish National Board for Technical
and Industrial Development and ABB STAL AB.

The work was conducted during three years of graduate studies at the
Department of Computer and Information Science at Linköping University,
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2 Introduction to Part I

This thesis has been written with a special goal in mind, namely bridging
the gap between model-based KBS7-technology and its utilization in large-
scale industrial applications.

The difference between research models and useful industrial models is
size. It is reasonable for a researcher or knowledge engineer to hand-craft a
model that contains a few hundred components directly into a textual
frame-based language. It is, however, impossible to keep track of the
complexity of a realistic industrial model containing thousands of
components at this level of abstraction. The user interface software
architecture (UISA) described in the thesis is meant to be a fundamental
framework for implementing knowledge engineering tools for managing
such complexity. It combines existing knowledge from research disciplines
such as model-based knowledge engineering, object-oriented
programming, user interfaces and cognitive psychology8. This novel
combination is believed to be a powerful vehicle for approaching a larger
goal: efficient utilization and management of large scale model-based
knowledge-bases in industrial applications.

The user interface issues dealt with in this thesis are related to many other
research challenges in the area of knowledge-based systems. The following
two sections will give a brief introduction to some of the fundamentals
questions and important research challenges to the field. 

2.1 Knowledge in a knowledge-based system
A definition of the goal of knowledge-based systems presented in 1990
was:

Knowledge, to be useful, must be available to those who need 
it. The goal of knowledge-based systems research is to discover 
how to deliver, in a timely and accurate way, the knowledge 
helpful for a particular task - that is, how to make wide varieties 
of expertise available to decision makers when and where they 
need it.[Buchanan et al. 90] page 395.

Knowledge in a knowledge-base can be seen as a stored potential for
generating rational actions that will lead to the completion of a particular

7. Knowledge Based System
8. Appendix D page 215, and Appendix E page 218.
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task.

The thesis presents an information system software architecture built on a
thorough theoretical basis, that enables providing fast interactive access to
large amounts of knowledge for a group of proficient users, namely
knowledge engineers and domain experts who provide the KBS with its
knowledge. Fast access is provided through a special user interface design
that requires understanding some application-specific graphical syntax and
semantics which cannot be expected from an “ordinary” user without
special training. The description of the software architecture for
implementing this kind of “fast knowledge access interface” is given in
chapter 18.

Before we continue by describing related topics and aspects of KBS-
research to put this research in context, it might be valuable to examine one
of its most important fundamentals, namely the definition of the term
knowledge.

What do we mean by “knowledge”?   Everyone has some understanding of
the word and uses it, but few can give it an appropriate definition. During
the 70’s and early 80’s there was a significant debate amongst artificial
intelligence (AI) researchers about the benefits and value of different kinds
of knowledge representations.

Allen Newell argued that progress could be speeded up by a better
understanding of knowledge and the nature of knowledge. In “The
Knowledge Level” [Newell 82] he described knowledge in functional
terms; as something that lies above the symbolic representations it can be
given in a computer. A hierarchy of computer system levels was defined,
where the highest is the “knowledge level”, and the one immediately
beneath it is the “symbolic level”. The idea was formulated in;

The Knowledge Level Hypothesis. There exists a distinct
computer systems level, lying immediately above the symbol
level, which is characterized by knowledge as the medium and
the principle of rationality as the law of behavior.[Newell 82]
page 99

Knowledge exists at the knowledge level, but can only be represented at the
symbolic level9. His description was formulated much in terms of a rational
agent. If the agent has a goal, it tries to reach it by using its knowledge for
selecting actions that lead to progress towards the goal. The following
quote gives an idea of the nature of Newell’s conception of knowledge;

9. There are other ways of representing knowledge than symbols. Connectionist
approaches and conceptual spaces.
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Knowledge is intimately linked with rationality. Systems of 
which rationality can be posited can be said to have knowledge. 
It is unclear in what sense other systems can be said to have 
knowledge.

Knowledge is a competence-like notion, being a potential for 
generating action.

Knowledge serves as a specification of what a symbol structure
should be able to do.[Newell 82] page 100

The coupling between knowledge and rationality are especially articulated
in Newell’s definition of “the principle of rationality”, and “knowledge”.

Principle of rationality. If an agent has knowledge that one of 
its actions will lead to one of its goals, then the agent will select 
that action.

Knowledge. Whatever can be ascribed to an agent, such that its 
behavior can be computed according to the principle of 
rationality.[Newell 82] page 102,105

From an industrial designer’s point of view the two definitions could be
interpreted in the following way. The goal is to fulfill the requirements
specification. Knowledge or “know-how” must be represented in a way that
allows rational actions to be selected and performed, until a design is
created which satisfies the requirements. 

The definitions leave the knowledge representation questions open.
Knowledge can be encoded in any form that proves itself to be valuable in
practice. This was also one of Newell’s messages 

... the solution lies in more practice and more attention to what 
emerges there as pragmatically successful.[Newell 82] page 94

Several knowledge representation techniques have proven themselves to be
successful for industrial applications. Probably the most well-known and
successful applications are the X-family of systems, developed by Digital
Equipment, for solving computer configuration tasks amongst others. In
1989 they were used to configure some 100,000 DEC systems[Harmon 89].
The basic knowledge representation used in the systems are rules written in
OPS5 [Forgy 81]. Problems of managing complexity arise when the size of
the knowledge-base grows. XCON, the largest system in the X-family
contains more than 10 000 rules. Structure must be imposed above the rule-
level, or rather the rule-base should be generated from “better” knowledge
structures. “Better” means that the source knowledge structures should be
easier to acquire, explain and maintain. The origin and some ideas behind
the organization of these structures are described in more detail in chapter
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3.

The idea of “components of expertise” has been pursued by Luc Steels
[Steels 90]. His initial ideas were presented in 1984 under the title “Second
Generation Expert Systems” [Steele 84]. The “Second Generation” meant
that it was an new approach to overcome many of the limitations with the
first generation rule-based systems, particularly those limitations dealing
with knowledge acquisition. 

Experts do not think in terms of rules, but rather in terms of domain
concepts. Expertise often lies in knowing how to think about a problem, i.e.
in what terms, and at what level of abstraction. Once this is formulated
explicitly in a conceptual model10 of the domain, the expert has a language
in which the large bulk of detailed domain knowledge can be expressed.
More about this will be discussed in chapter 3 and chapter 5.

Before describing some major challenges in knowledge-based research,
some comments must be made on the term “expert systems” compared to
“knowledge-based systems”.

The term “expert systems” is commonly used to describe these 
(knowledge-based) systems for three reasons. Very often their 
performance goal in a target task is the level of competence 
exhibited by human experts, their knowledge is elicited from 
experts, and their reasoning methods are based on problem-
solving techniques and strategies used by experts.

Because these three characteristics are only suggestive, but are 
neither necessary nor sufficient for building intelligent systems 
of some utility, we prefer the term “knowledge-based systems” 
for applications of artificial intelligence (AI) to problem-
solving and decision-making tasks. [Buchanan et al. 90] page 
395

There is good reason for adopting the more general term “knowledge-based
system” in the area of knowledge-based design (which is my target). Many
design problems are rather routine-like11. The importance of developing
and applying KBS-technology to these problems is not because a high level
of scarce expertise is needed to solve them, but rather because of their
inherent complexity and that they are boring and error prone when
conducted manually. Examples of such tasks are design rule checking, and
critiquing of complex designs. KBS-technology seems promising for
enabling some of these tasks to be automated at a reasonable cost, which
would not be the case with traditional programming techniques.

10. More specifically what is needed is a formally specified conceptual model of the target
domain. Conceptual models and formal conceptual models or meta-models are discussed
in more detail in chapter 5 on page 29.
11. Brown and Chandrasekaran refer to routine design tasks as class 3 design [Brown et al.
89] pp 34.
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Despite this, since the term “expert system” has been around for quite a
long time and is well established and frequently used in the literature, it
will also be used here as a synonym for “knowledge-based system”. 

The next section mentions important research challenges in the KBS-area
[Buchanan et al. 90]. These will become easier to work on if progress is
made first on facilitating the development of user interfaces for knowledge
engineering and knowledge-based systems.

2.2 Challenges
There are several technical challenges that have to be overcome before
more advanced knowledge-based systems can be built than the ones in use
today. Most challenges are design considerations, i.e. the basic
componential framework of expert systems has to be enhanced in order to
meet these challenges.

2.2.1 Use and representation of knowledge

During the 70’s, production-rules were the commonly adopted mechanism
for knowledge representation in expert systems. Later, frame-based and
hybrid systems appeared, and filled in some of the gaps left by pure rule-
based systems. To a large group, expert systems became analogous with
their computational mechanisms. Knowledge engineering became a way of
transforming an expert’s problem solving method into the computational
mechanism provided by an expert system shell. This perspective was
misleading. 

The challenge is to describe knowledge at the domain knowledge level. To
build tools that can easily acquire those domain knowledge level
descriptions in the terms and concepts used by domain experts, not in terms
of rules and frames. In the area of engineering design, for instance, a
domain knowledge level description could be a description how to make an
extension to a partial design, how to check design constraints and how to
change the design if certain constraints are violated.

The knowledge descriptions acquired at the domain knowledge level must
then be transformed into an adequate executable representation at the
computational level, such as rules or procedures. How to do this and how to
do it efficiently are challenges in themselves.

2.2.2 Acquisition and maintenance of knowledge-bases

Knowledge acquisition is a famous bottle-neck in the building of
knowledge-based systems. It is a major effort to enter enough knowledge
into a system so that it can deliver an acceptable performance. And once
the knowledge is captured, the effort to maintain it remains. To mention an
example, Digital Equipment Co. needs 40 knowledge engineers for
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developing and maintaining the X-systems. Although there is some
variation, about 40-50% of the rules are either created or re-written every
year. For all systems, there are about 20,000 rules and a database is used
that contains descriptions of about 30,000 parts [Harmon 89]. 

2.2.3 Explanation

The contents of a knowledge-base are, as mentioned, highly dynamic.
Changes and updates naturally provide a continuous stream of
opportunities for introducing errors. Users of a knowledge-based system
must be able to check the generated solutions, and get justifications and
explanations why certain choices were made. Otherwise they will not have
confidence in the system. The first generation systems’ how and why
explanations, which are based on a trace of the rule execution, are not
enough. This is particularly the case for second generation systems, where
rules might have been generated automatically and much of the contents in
their premises might consist of heuristics to optimize the reasoning
process. A strong connection with the descriptions used at the domain
knowledge level for acquiring the knowledge seems to be necessary in
order to provide satisfactory explanations. 

2.2.4 Flexibility

The KBS must be extensible without a substantial amount of
reprogramming being required. Adding new knowledge or making
modifications should not have unexpected “side effects”. Reasoning about
problems at the border of the system’s competence should be possible, with
a “graceful degradation”.

2.2.5 Partnership Role

In the future, more engineering work should be conducted in cooperation
with computers. With better user interfaces and a better adaptation of the
internal organization in the computer to the actual problem solving
situations for the users i.e. their domain knowledge level, significant
enhancements in productivity can be expected.

2.2.6 Summary of general challenges

To conclude, we need ways of representing knowledge at the domain
knowledge level that are closer to the terms and concepts that experts think
in. We need tools for managing large knowledge-bases. A knowledge-based
system must be able to explain and justify its solutions in a way that is easy
for the user to comprehend.
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2.3 Motivation for the work
Useful industrial KBS-applications have the common feature that they
become large and complex. Development and maintenance become difficult
tasks. It should be possible to make this type of work more interesting,
creative and efficient if user interfaces are adapted to what is known about
human cognitive capabilities.

The thesis points to theory in the literature that should be taken into
consideration when implementing user interfaces for knowledge-based
systems. A user interface software architecture intended to meet the
knowledge engineers’ needs for developing model-based KBSs in the
future is given. Some differences between our approach and others’ are
described in section 20.3 on page 165.

A knowledge-base should reflect the knowledge of a human expert. It has
been shown that a KBS-prototype can be a useful tool for the expert in
refining his knowledge and gaining new insights about it during the
knowledge acquisition process [Eriksson 89][Eriksson 91][Sandahl
87][Shaw et al. 90][Steels 90]. A prerequisite for this “active expert
approach” is that the system has a suitable user interface that can be
directly operated by the expert. This presupposes that the interface operates
on the domain knowledge level, i.e. the objects that are manipulated
through the interface correspond directly to objects in the KBS’s target
domain.

Another prerequisite for successful knowledge acquisition for a model-
based KBS, is that to some extent a formalized conceptual model12 of the
domain can be found and explicitly expressed in the user interface
representation. During the knowledge acquisition process, many KBS-
prototypes may have to be built to support entering knowledge and to give
the expert an understanding of how the system is going to work. During the
prototyping stage, major modifications might be made to the meta-model of
the domain, which in turn has major impacts on the user interface design. If
customized graphical user interfaces could be built and modified easily, it
would be of great value for the knowledge acquisition process. The
proposed user interface software architecture (UISA) will significantly
reduce the implementation time for this type of user interface compared to
the current state of the art. The way to achieve this is using a language with
full object-orientation [Wegner 87]13, a clean separation of functionality
between different object classes and a large structured class-library of

12. More details about the formalized conceptual model (or meta-model as it is referred to
in this thesis) are given in section 5.1.4 on page 33. A meta-model has much in common
with entity-relationship models [Chen 76] but has many additional features that are needed
for specifying valid structures in knowledge-bases.
13. A fully object-oriented language has objects that are instances of classes embedded in
an inheritance hierarchy. Smalltalk and Simula are fully object-oriented languages. Other
types of languages are object-based languages such as ADA or class-based (without
inheritance) such as CLU.
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easily configurable user interface object classes.

In order to develop a UISA for future model-based KBSs, we must know
what these will look like. As will be described in chapter 3, a general
framework for knowledge components is maturing. In the future, many of
these components will be implemented, carefully studied and well
understood. Once a large enough number of such components are available,
there will be a need for libraries of “knowledge components”, that make
different knowledge entities easily available as building blocks for the
implementation of new systems.

The complexity-level14 of both the components and the applications that
are assembled is expected to be very high. In order to manage the
complexity, the expert and the knowledge engineer will need better tools
for visualization and manipulation of the contents of the KBS. Since the
external shape of knowledge in different application domains shows large
variations, the development of improved15 knowledge components will
continue to be a hand-crafted task requiring a high degree of skill and a
good understanding of the workings of different reusable building blocks.
The development of such skills will benefit greatly from a higher
communication bandwidth and incrementality in the human-computer
interface.

The proposed UISA is a frame-work for the design and implementation of
efficient browsers and manipulation tools for object graphs. Such
interactive tools allow knowledge structures to be directly manipulated,
without the need for transformations into some kind of textual language or
knowledge representation. As mentioned, this is especially valuable in the
early knowledge acquisition phases, where concepts and appropriate names
for them are not yet clearly defined. In a graph there is no need to define
appropriate names, since different concepts can be accessed and referred to
by pointing. The graphs are used as a way of modelling the contents of
experts’ mental models of the target domain for the developed knowledge-
based problem solver. Tools for efficient interaction with such conceptual
graphs may have the same impact on productivity for knowledge
engineering as hierarchical text editors have had for document
development.

14. Complexity-level in terms of the number of interacting parts, and overall size of the
system. 
15. Improved in terms of their generality, easiness to learn and use, and performance in the
final delivery system.
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3 Components of Expertise

This chapter will present an overall picture of the different components in
what was called second generation knowledge-based systems in the early
90s. This is intended to highlight the importance of organized knowledge
structures, and justify the effort of building efficient tools for their
interactive manipulation. In order to be brief, the description has to be
somewhat condensed. Most of the ideas come from [Steels 90][Steels 89a]
and [Brown et al. 89].

Steels, as one of the proponents of a “paradigm shift”, away from the
simple rule-based model of expert systems, launched the term “Second
Generation Expert Systems” [Steele 84]. 

It was based on a criticism that first-generation systems like 
MYCIN..., only contained surface knowledge and therefore 
were brittle, had weak explanation facilities, no clear 
boundaries for knowledge acquisition, etc. Its purpose was to 
overcome many of the limitations in the first generation of rule-
based systems. Second generation expert systems were 
supposed to have both a representation of the deep knowledge 
and of the surface knowledge. They could do two kinds of 
reasoning. Surface reasoning was used to solve cases quickly 
and efficiently. The deep reasoning was available there as a 
backup when the surface knowledge failed. [Steels 89a]

Second generation systems have a representational component which is a
model of the artifact of interest, and a problem-solving component which
solves a problem16. Typical target problems could be diagnosing a
malfunctioning device given a set of symptoms, or to generate the design of
a device from a given functional specification.

The representational and problem-solving components contain
subcomponents that are separable and generally useful for many purposes.
Subcomponents of the problem-solving component for diagnosing
malfunctions in a car could be used for diagnosing malfunctions in an
aircraft. Many subcomponents of the representational model of a subsystem
in a computer could be used for both diagnosing faults and for configuring
similar subsystems.

16. There is also a learning component, whose function is to compile experience from
consultations of the deep model into fast surface knowledge. The learning mechanism,
although important and interesting in itself, will not be treated further here.
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3.1 Deep versus surface knowledge
Before describing the representational and problem solving components in
more detail, some comment must be made on the division of knowledge
into deep and surface knowledge. 

Deep knowledge makes explicit the models of the domain, and the
inference calculus that operates over these models. A typical example of a
domain model for diagnosis is a causal model, linking properties of
components through cause-effect relations. An inference calculus operating
over this model could take the form of a set of axioms that prescribe valid
inferences over the causal network. 

The term surface knowledge usually stands for knowledge that is
immediately applicable in a problem-solving situation, i.e. recognizing the
situation will immediately lead to selection (and execution) of an
appropriate action. In the problem-solving situation, there are two tasks
that have to be conducted simultaneously. Firstly, to contribute to the
solution of the problem, and secondly, controlling the path of the problem-
solving process. Surface knowledge usually contains a mixture of both
these ingredients. An entity of surface knowledge (e.g. a rule) is therefore
often not self-contained and explainable in isolation. It consists of selected
portions of deep knowledge and heuristics for guiding the problem-solving
process.17

3.2 Conceptual and pragmatic aspects of 
expertise

Expertise is the ability to solve certain problems in a specific domain.
When analyzing expertise at the knowledge-level, a distinction can be
made between its conceptual and pragmatic aspects. The conceptual aspects
concern the terms in which to think about a problem. The pragmatic aspects
focus on how to deal with limitations that humans and computers have
during the problem solving process. Examples of such limitations are:

Limitations in time: During design the number of alternatives for a design-
choice may be large. It takes too much time to check all of them. Ways of
pruning the search-space must be considered.

Limitations in space and access-times: Storage space is always limited.
Efficient ways of representing data for solving certain sub-problems are
needed.

Limitations in requirement formulations: It is not efficient to specify

17. Note that the distinction between deep and surface knowledge has nothing to do with
the formalism that is chosen to implement it. The distinction is made at the knowledge
level, and is not a computational one. Deep knowledge can be implemented by rules and
surface knowledge by using frames. Brown’s language, DSPL, is a good example of the
latter [Brown et al. 89].
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everything. Assumptions must be made about the unstated.

Limitations in evaluation possibilities: The resources for evaluating a
design are limited. Experiments and simulations must be carefully prepared
to reveal valuable information compared to costs. 

Limitations in theory formation: Models must be derived inductively via
real world interaction, or via communication with other humans. This often
makes the models limited in their accuracy and scope of prediction.

The conceptual aspects are mainly captured in the domain models and the
pragmatic aspects in different problem solving methods.

3.3 Domain models and deep knowledge
A domain model resembles some aspect of a domain. A static domain
model is NOT deep knowledge in itself. It first becomes deep knowledge
when it is accompanied with an inference calculus18, that can generate
answers to queries to the model.

Typical domain models for diagnosis and to some extent design are [Steels
90]:

* A structural model describing part-whole relationships between
components and subsystems.

* An interconnection model showing how different components are
connected to each other.

* A causal model representing the cause-effect relationship between
properties of components.

* A geometrical model representing the spatial relations between
components.

* A functional or behavioural model representing how the function
of the whole follows from the function of the parts.

* A fault model, representing for each function, possible faults and
components that may be responsible for the fault.

* An associational model relating observed properties with states of
the system.

Domain models are particularly suitable for knowledge acquisition. In the
area of design, engineers use drawings, function diagrams, and so forth for

18. An inference calculus can be implemented in rules or using object-oriented methods.
Rules are usually inefficient, but require much less programming knowledge on the part of
their implementor. Methods are preferred when the speed is of concern, since they allow
explicit control of the computation processes. Usually the method-type implementation is
a recursive straightforward procedure.
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developing designs. The inference calculus that engineers use in their
thinking processes is intimately connected to this type of representation
media. The inference calculus for the drawing of an electronic circuit
design (which is an interconnection model) will have rules and methods for
deriving the components that are connected to one particular component,
the fan-out needs for a certain circuit, etc.

In order to develop tools for interacting with and manipulating the deep
knowledge, we need explicitly formulated conceptual models of the
domain, represented by for instance object-oriented domain models
(Section 9.5 on page 72 shows an example).

Using an editor for domain models and a set of instantiated model cases, it
should be possible to elicit the inference calculus of the deep knowledge.
Given an appropriate language integrated into the domain model editor, the
expert should be able to enter parts of the inference calculus himself,
without support from a knowledge engineer.

Much of this deep knowledge is probably usable in several different
domains. Providing extendable components inside a “knowledge engineer’s
toolbox” will certainly be beneficial for knowledge engineering
productivity.

3.4 Generic tasks
A generic task is characterized by information about the following
[Bylander 87]:

1. The type of problem (the type of input and output). What is the
function of the generic task? What is the generic task good for?

2. The representation of knowledge. How should knowledge be
organized and structured to accomplish the function of the
generic task? In particular, what are the type of generic
concepts that are involved in the generic task? What concepts
are the input and output about? How is knowledge organized in
terms of concepts?

3. The inference strategy (process, problem solving, control
regime). What inference strategy can be applied to the generic
task? How does the inference strategy operate on concepts.

Examples of generic tasks are interpretation, diagnosis, construction
(including design and planning), monitoring and instruction. A generic task
can be implemented with different problem solving methods, using
different domain models. Generic tasks can serve as an indexing
mechanism for compatible methods and models. Once a generic task is
identified in the target problem, its corresponding collection of problem
solving methods and domain-model components can be consulted, and a
configuration selected to implement a solution.
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The idea of generic tasks was put into focus by Chandrasekaran
[Chandrasekaran 86]. Later, different authors gave different interpretations
of the term “generic task”, but one main feature seems to be that properties
of generic tasks should be transferable across application domains.
Examples of generic tasks are diagnosis and classification.

3.5 Problem solving methods
A problem solving method is a knowledge level characterization of how a
problem may be solved. Much of the work on problem solving methods
originates from a series of knowledge acquisition tools developed by
McDermott and his collaborators[Marcus 88a][McDermott 88].

Typical examples of problem-solving methods are cover-and-differentiate
for diagnosis, and propose-and-revise for construction. Cover-and-
differentiate first proposes a set of candidate explanations that cover most
symptoms, and then tries to find the most likely ones by gathering facts on
features that differentiate the candidate explanations.

Propose-and-revise first proposes a partial solution and then revises it by
resolving violated constraints. There are three roles that knowledge can
play in this problem solving method [Marcus et al. 89]:

1) PROPOSE-A-DESIGN-EXTENSION

2) IDENTIFY-A-CONSTRAINT on a part of the design.

3) PROPOSE-A-FIX for a constraint violation.

Knowledge roles of these types establish a framework for the knowledge
acquisition process. The knowledge-engineer knows what to look for and
how to transfer different knowledge entities into a working system. By
restricting the context for knowledge-acquisition to a particular problem
solving method that is well understood, the work of the knowledge
engineer can be automated. This has been successfully done in several
knowledge acquisition tools. Their job is to query the expert for
knowledge-entities, check them for consistency and ask questions such that
enough knowledge is acquired for generating a working system.

MOLE is an example of a knowledge-acquisition-tool for the cover-and-
differentiate problem solving method [Eshelman 88], and SALT is a well-
known example of a knowledge acquisition tool for the propose-and-revise
method [Marcus et al. 89].

To give an idea of the sophistication of such a knowledge acquisition tool
we can mention that SALT has been used for developing a propose-and-
revise problem solver that designs elevators [Marcus et al. 88]. The
generated knowledge-base for the performance system contains about 3000
OPS5 rules, of which about 70% are domain-specific and generated from
the acquired knowledge, and the rest are used for controlling the problem-
solving process.
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3.6 Summary and challenges
As described above, the contour of a general framework for organizing and
reusing different components of knowledge is emerging. One important
question and challenge is: how are we going about to make this growing
body of knowledge efficiently available to knowledge engineers in
industry? To do this, we clearly need to organize and store knowledge,
code, documentation etc. in some kind of engineering databases [Johansson
89]. The size of these databases will become very large, so the ways of
accessing information must be flexible.
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4 Knowledge-based Systems for 
Design

Knowledge-based systems for design are of interest since a high potential
benefit from better user interfaces for knowledge engineering can be
expected. There are many existing expert systems for design19. Although
developing new KBSs for design is much of a hand-crafted task starting at
the expert system shell level or even lower, there are some knowledge
acquisition tools such as SALT and SIZZLE that support knowledge-
acquisition when a certain kind of problem solving method is applicable
[Marcus 88a]. Ideally, what one would like to have is a knowledge
engineers tool- and component library that contains useful well-working
modules that could be assembled into a system. The tools and modules
could be indexed according to their corresponding generic tasks. The next
organization level in the library would be a set of problem-solving methods
that are applicable for performing each generic task. Each method should
have its accompanying knowledge-acquisition-tools and knowledge
representation components. Which problem-solving method is chosen will
depend on what knowledge is available for acquisition for the current
application.

An average design application would probably need to combine problem-
solving methods for several different generic tasks. Therefore a
standardization of the tool and component interfaces will be needed to
enable proper integration. One important research topic is to find out what
these interfaces should look like.

Existing applications that are built from components in the library should
be accessible for the knowledge engineer to study and copy code from.
They will be a shareable and an efficient source of knowledge engineer
know-how.

Since each such application will be large, the size of the toolbox, including
many existing applications, will be considerable. To be able to find
something in information quantities of these sizes, the contents must be
well-organized into access structures that are easy for the knowledge
engineer to remember and navigate in. The access time is the time it takes
from the moment the knowledge engineer knows that he needs some
information, knowledge or blocks of implementation code, until he has it20

19. Papers surveying relevant topics and suggesting general frameworks for knowledge-
based design are referred to in section 4.4
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on the screen. 

The accessibility, i.e. the ease by which a suitable entity of information can
be found, depends on a combination of the access time and the
remembering and searching effort required for finding the desired content
in the knowledge-base. If the knowledge engineer is highly skilled,
accessibility and access time will be fundamental constraints that limit his/
her performance. If the supporting system is highly incremental, the
knowledge engineer can develop his thoughts in cooperation with the
system, where the system is responsible for remembering the details and
checking for consistency. The user interface is fundamental for providing
these properties.

This chapter will give an idea of what kind of components for knowledge-
based design that could be part of the suggested knowledge engineer’s
toolbox.

The intention is to show that there is a rich variety of mutually non-
replaceable components that have to be present in such a toolbox.
Extensive support in the user interface is needed for providing easy access
to available components. Efforts to develop libraries of knowledge
components will not become rewarding until tools for building flexible
interactive user interfaces that enable development, assembly and
manipulation of such components are available.

4.1 Concepts for describing the design process
The notion of design-space is a useful metaphor for describing design in
general terms without having to refer to an explicit example. It will be used
here to introduce some terminology for later discussion.

Many design-problems can be seen as the process of searching for a good
point in a space of possible designs. The axes of the space represent a scale
of different possible design-choices, and may be both continuous or
discrete. The design-domain will define which axes there will be, and
which areas in the space contain legal designs.

Input to the design-problem-solver will be a set of requirements that will
determine certain areas inside the legal design-areas as acceptable
solutions. The output is a single point or a set of points inside the
acceptable areas that can be ordered according to some cost- or
desirability-function.

In the space, the hyper-volumes of acceptable solutions are shaped by
different design-constraints. The design-process will proceed as a sequence
of design-choices that will restrict the space to be searched by one
dimension for each choice. A design-choice may restrict the space-to-be-
searched in such a way that no part of it will cover any acceptable area.

20. Or handles to it that can be manipulated or used as a symbolic reference.
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This is detected by constraint-checking.

The dimensionality of the design-space is large for any non-trivial design-
task. Each design-choice and constraint-check is associated with a
computational cost, and for non-trivial cases it is not realistic to search the
whole space for acceptable solutions. Instead the search must be guided by
knowledge.

An entity of guiding knowledge can be seen as a demon guarding an area
that covers a set of dimensions in the space. If the design-state enters that
area, the demon says how and where to proceed21. If there is no knowledge,
(i.e. no demon) then the area must be searched, and its different points be
evaluated.

At this point we can identify three types of knowledge that have different
roles22. The first type applies when the design-state covers acceptable
solution areas. It generates the next design-extension, i.e. makes a design-
choice. The second type checks constraints, and reports if a constraint is
violated. The third type applies when the design-state is completely
unacceptable and can be referred to as a fix. An entity of fix-knowledge
guards a particular illegal area for the design-state and suggests what
design parameters to change to make it move to legal and acceptable areas
again.

The three types of knowledge are given different names by different
researchers. Here we have adopted the terminology of [Marcus et al. 88]
and call them 1) design-extension 2) constraint-checker and 3) fix.

Each of these knowledge-roles have common behavioural properties that
could be extracted and implemented in an object-oriented class-hierarchy
framework and supplied as building blocks in the knowledge engineer’s
toolbox.

4.2 The components of a design instantiation
The output of a KBS for design is a design instantiation that consists of a
complete description of components and their relations which implement
the required functionality. The “deepness” in the description depends on
the level of functionality in the primitive (i.e. terminal) components. When
having access to a domain-specific component library, there will always be
“build or buy” decisions to make. These will be based on evaluations of
different alternatives, or on previous experience (i.e. surface knowledge).
To enable search and evaluation, the components that may be building-
blocks in a design instantiation must provide functions that can answer
questions such as: What is the weight? Price? Center of mass? This kind of

21. This is similar to the usual rule-based black-board architecture, where the design-state
is on the black-board, the dimensions represent the variables in the LHS of the rules, and
the area is determined by the expression using the variables.
22. The same knowledge roles were mentioned in section 3.5 on page 21
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inference calculus must be provided in the form of functions and their
interfaces should be “standardized” for a certain domain of applications.
This will allow libraries of deep knowledge components to work together in
easily assembled configurations that were never thought of by their initial
component implementors. Many rather trivial but necessary interface
design decisions will have to be made in order to allow “software-IC”-
libraries23 of these kind to be built. Once a working standard is defined, the
work of developing components can be distributed to groups of domain
specialists that do not necessarily have any contact with each other. No
such standards exist yet, but many schemes of common practice already
exist. It is research a task to expose such schemes and find out which ones
are candidates for standardization and justify why.

4.3 Design plans versus iteration
Depending on the nature of the design space, different problem solving
methods are preferable. In a wide design space, most solutions are legal.
The problem lies in an efficient division of the space and filling out the
details in a rational way. Surface knowledge in the form of design plans are
well-suited for this job. In a sparse design space, design choices may
depend heavily on each other, and many conflicting constraints may
interact. If no well-functioning standard cases are available, an iterative
problem solving method like the propose-and-revise method may be more
applicable. The “toolbox components” for this method have already been
mentioned.

Brown has developed a framework for plan-based design [Brown et al. 89].
The components of a plan consist of nine different component-types or
“agents” that each have common behavioural functionality. These could be
implemented as reusable components in a knowledge engineer’s toolbox.
The work of the knowledge engineer, or domain expert, would be to
assemble and specify the details of instances of the appropriate planning
components. 

4.4 Observations and conclusions
There are numerous other techniques of design problem solving that could
be supported with tools in a knowledge engineer’s toolbox. Detailed
descriptions of this subject can be found in for instance [Chandrasekaran

23. The term “software-IC” draws a parallel with the explosive development of electronics
after proper interface standards were defined and accepted by industry. Note that also for
hardware integrated circuits, the contents of the standards were somewhat less exciting
details from a functionality point of view. They specified chip-package pin-outs, voltages
on chip power supplies, fan-outs etc. In the same way standards for software-IC’s will be
“low-level details” such as naming conventions for messages, message protocols,
standardized abstract datatypes etc. A discussion on software-IC’s can be found in
[Ledbetter&Cox 85]
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90][Mostow 85][Mittal&Araya 86][Tong 87]. It is clear that design is very
varied in nature, and that there is no single problem solving-method that
can cover more than a small domain of design problems. Therefore, to be
efficiently equipped for the development of design problem solvers, the
knowledge engineer must have access to a large library of problem-solving
methods and their knowledge building blocks.

Since the details of the components’ internal workings might be rather
complex, it should be possible to just copy or inherit the relevant parts,
without having to scrutinize much of their implementation code. Examples
of existing applications must be available to allow the knowledge engineer
to inspect and recall how to use the different knowledge components. A
problem-solving method or set of deep knowledge components may require
some adaptation to suit a new domain. In order to facilitate interaction with
new and adapted knowledge components, tools for implementing user
interface components for such types of interaction must also be provided.

As has been indicated, there are a large number of different types of
knowledge entities that have to cooperate in a knowledge-based system for
design. There is no particular ordering among them, and therefore no
natural way to order them in a textual programming language. In the same
way, as it is tremendously inefficient to work with a large object-oriented
system in Smalltalk without a browser, it will be impossible to develop a
large knowledge-base for design without good browsing tools. Smalltalk
has a well-defined domain model24 that is revealed to the user through the
browsers. It is an important research question to discover meta-domain
models and browsers for knowledge-based design-systems. 

This discussion leaves us with the conclusion that efficient support for
building customized user interfaces for any type of knowledge components
would be of great importance for making progress in research on
knowledge-based systems for design.

24. The Smalltalk domain model consists of class-categories, classes, message-protocols,
messages, class-variables, stack-frames etc. Access to instances of each of these entity-
types is well provided for by the browsers, inspectors etc. [Goldberg&Robson 83].



28 Development Environments for Complex Product Models. V2

4.5 Some challenges for knowledge-based 
design systems

Here, a list of research challenges in the area of knowledge-based design is
given. It establishes the main topic of this thesis in relation to other
subjects.

* Finding useful structures for deep knowledge components. This
would include identifying generic components and finding designs
for method protocols that implement their inference calculus.

* Finding useful structures and efficient implementations of surface
design knowledge. These could, for instance, be based on design-
plans as suggested by Brown [Brown et al. 89].

* Development of class hierarchies of knowledge components for
different domains.

* Developing a taxonomy of problem solving methods for design.

* Learning in design. A design problem solver can increase its
efficiency by learning (i.e. generating surface knowledge) after
successfully finding a solution in the design space after search
[Horner&Brown 90].

* Methodology and tools for visualization of the problem solving
process for debugging and explanation purposes.

* Finding efficient methods and tools for generating user
interfaces that allow incremental interaction with large
design knowledge-bases.
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5 The KBS Development Process

Facilitating large-scale knowledge acquisition is one of the fundamental
tasks for the future knowledge engineer. The job will be to provide the
domain expert with a language and tools so that he/she is able to enter the
large bulk of detailed knowledge entities into the knowledge-base by
himself/herself. This chapter provides a map of the KBS development
process, including acquisition of an understanding of the concepts and
abstractions in the target domain, such that special “customized”
knowledge acquisition (and maintenance) tools can be developed. It also
describes the properties of some important supporting tools for the
knowledge engineer which speed up this process. The UISA described in
Part IV is an important component for building such supporting tools.

5.1 A model of the KBS development process
Figure 2 on page 31 depicts some of the important relations between
processes and intermediate forms of knowledge during the idealized
development of a knowledge-based system. This model is our conception
of how the KBS development process should be divided to benefit from
knowledge about:

* Models of human cognitive processes and knowledge organization
(e.g. [Card et al. 83], [Lindsay&Norman 77],[Minsky 75],[Schank
82]).

* Techniques and models for knowledge acquisition (e.g. [Marcus
88a],[Shaw et al. 90])

* Theory and techniques for object-oriented modelling of limited
subsystems in the real world [Sundgren 73][Sundgren 92]
[Coad&Yourdon 90][Rumbaugh 91].

* Current understanding of implementation techniques for object-
oriented data-bases (e.g.[Cattell et al. 96][Johansson 89][Zdonik
90]).

The whole model is drawn as if it were a uni-directional development
process. In reality it is heavily iterative. The arrows depict a partial
ordering of what must be available before the next process can be started to
generate or modify its successor(s).
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One major benefit of this development model is that it enables the expert
and the knowledge engineer to separate their different domains of
expertise. The domain expert is relieved from technical KBS
implementation details and the knowledge engineer will not have to
understand all the details of the target domain. It is important that the
expert and the knowledge engineer are able to iterate towards a well-
defined and acceptable meta-model of the target domain.

Having an explicit meta-model, no matter if it is acceptable or not, the
knowledge engineer can provide the target domain expert with interactive
tools for developing and experimenting with prototype models of the
domain. An explicitly formulated meta-model will be a significant aid for
the specification and understanding of both the target domain and how the
KBS should operate. 

The KBS development process depicted is introduced from top to bottom as
follows: 

The development of expertise starts with prospective experts interacting
with some artificial25 system in the real world, the real world system. The
interaction enables development of skills in how to handle such systems in
their particular target domain. The skills are stored in the form of mental
models in the minds of the experts and may in some cases hold decades of
experience in a particular domain. 

During the early knowledge acquisition process, parts of the mental models
are formulated in some representation that can be communicated to others.
These formulations are called conceptual models. The conceptual models
are then analyzed and a model of the conceptual models is developed that
allows a more precise reformulation of the contents of the conceptual
models. This “high-level” model is called a meta-model. A synonymous
term is domain model. It can be seen as a language for describing instances
of models of the target domain. The meta-model is later used as an input
specification for the design and implementation of knowledge acquisition
tools and data acquisition tools. Many of the concepts specified in the
meta-model will have a direct one-to-one correspondence with definitions
in the database implementation model or database schema. The knowledge
acquisition tools will be used by the expert for interactive modelling and
entering of knowledge. Output from the tools will be knowledge entities
such as rules and partial plans that represent expert behavior in the domain.

25. In the scope of this thesis, we are mainly interested in KBS for artificial systems
developed by engineers. In these domains, concepts can be cleanly defined and adequate
formal object-oriented models developed. In natural target domains such as medicine,
concepts are often hard to describe in terms of formal models and thus less applicable for
the type of development process and tools described here.
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FIGURE 2. The process of developing a knowledge-based system. Arrows 
depict inputs needed and outputs produced or modified by the 
different processes. The whole process is highly incremental. 
In the shaded area, both the domain expert and the knowledge 
engineer must share a detailed understanding.

Data may often be available in various electronic forms (e.g. CAD-
drawings or measurements stored in data-bases) and therefore
transformable into facts that can be accessed by the KBS. Facts may of
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course also have to be entered manually. Facts describe properties of
different objects in the target domain and how particular instances of
domain objects relate to each other.

Output from the KBS design process is, in addition to the acquisition tools,
a database implementation model or database schema of the final
knowledge-based system. This model is in its essence a transformation of
the meta-model with several computational implementation decisions
specified. The database implementation model depends on which software
environment is selected for the final KBS, and how needed functionality
can be mapped onto provided facilities.

The process of implementation, operation and maintenance will be
continuous for the rest of the life of the knowledge-based system.

The whole process described above is as mentioned heavily iterative.
Knowledge and data acquisition tools may have to be modified or re-
implemented every time changes are made to the meta-model. Interactive
graphical editors for object-oriented models require much effort to
implement. The UISA described in Part IV is a framework for facilitating
this iterative implementation work.

In the following subsections, some of the above introduced terms are
described in more detail.

5.1.1 Real systems in the target domain.

The term real system will be used to denote the system in the target domain
that is the focal point for the problem solver in the knowledge-based system
which automates parts of the expert’s skills. No intrinsic models exist in the
real system itself, but rather an ordered or repetitive sequence of activities
or events. In the case of R1, an ancestor of the XCON expert systems for
configuring Digital Equipments Corporation’s VAX-11/780 computer
systems[McDermott 82], the real systems are computer installations. The
target domain is how these types of computers work and how to configure
them into proper installations. In the case of diagnosis, the real system may
be a particular computer configuration installed at a certain site and the
target domain is how to diagnose this particular type of computer
installation.

5.1.2 Mental model

When the expert interacts with real systems, he will acquire mental models
from them. These are fragmentary, partial models generated to account for
the expert’s purposeful interaction with the real system. Mental models
represent unexpressed, uncommunicated knowledge in the expert’s mind.
Mental models are not constrained by any external medium for
representation. They can contain memories of everything that the expert
can observe, perform and reason about in the real system. Parts of the
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mental models can be reformulated and represented symbolically. Such
symbolic representations become conceptual models.

5.1.3 Conceptual model

A conceptual model of the real system is a description generated from the
mental models of the real system. A conceptual model finds representation
in the communication primitives of language and behavior. The mental
models affect the form and representation of the conceptual model which,
in turn, is constrained by the language and behavioural representational
system26. The conceptual models are available for communication to
others, since others can acquire mental representations for the primitives of
language and behavior that are used in the conceptual models. Since the
mental model is unavailable to an observer, the conceptual model is taken
to represent the model used to address the task demands of the real system.
Conceptual models are used for communicating between humans. They are
not formal and not necessarily consistent, and usually require further
refinement.

5.1.4 Meta-model / Domain model

Once a conceptual model is made explicit, a formal representation can be
used to describe its properties. The formal description of the conceptual
model becomes a model of the conceptual model27. It should contain the
necessary primitives28 to recreate the operation of the mental model. The
model of the conceptual model is also called meta-model since it describes
the properties of models that can be expressed using the primitives defined
in the meta-model. The meta-model will contain both conceptual and
heuristic parts. The conceptual parts can be expressed in some data-model
formalism, such as extended entity relationship diagrams or some graphical
representation of the domain modeling primitives in our meta-database
(Figure 21 on page 82). The heuristics can be expressed in some textual
notation (e.g. rules or procedures/methods). When a meta-model has been
specified, it is possible to implement a customized knowledge acquisition
tool that supports collection and management of the larger knowledge
quantities needed for proper problem solving in the real system.

5.1.5 Prototype knowledge-bases

During elicitation procedures, prototype knowledge-bases play an

26. A behavioural description can be communicated by performing a simulation of how a
particular computer is configured. The types of actions performed during this simulation
are the communication primitives of the behavioural representation system and thus
components of a conceptual model.
27. The term “Model of conceptual model”, is from [Shaw et al. 90].
28. Some primitives can be implemented as reusable deep knowledge components (recall
section 3.3 on page 19).
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important role as an expression medium, memory29 and communication
channel for conceptual models. 

Sometimes prototype knowledge-bases can remain paper-based, but as soon
as they become large and complex it is beneficial to store and manipulate
them in a computer.

It must be possible to display prototype knowledge-bases in a format that
allows them to be a communication medium between the knowledge
engineer and the expert, allowing validation and confirmation to take place.
Prototype knowledge-bases also work as intellectual tools for the
knowledge engineer. They both help him to remember details, and provide
focal points for further elicitation. Interactive computer support for
developing prototype knowledge-bases is very important. It helps the
knowledge engineer to find errors and misconceptions in the conceptual
models, and meta-models. Such arise when the models do not correspond to
the real system. There may also be errors in the computer-based
implementation of the models, which may be internally inconsistent. It is
very hard to discover errors and misconceptions without being able to work
out sample structures in detail that can be inspected, computed and
analyzed. Interactivity and incrementality are very important in speeding
up the concept formation process with the help of prototype knowledge-
bases.

A knowledge-based system represents a model, that was constructed
through the elicitation, analysis, design and implementation process, and is
based on the assumptions underlying the representations in each modeling
phase. During the development of a knowledge-base it is desirable to
maintain a flexible development environment where the knowledge
representations can easily be manipulated and updated, but where there is
not necessarily any time criticality. High execution speed can be traded
with reduced flexibility. It may be worthwhile to generate and distribute a
final delivery system from the knowledge-base in the development
environment.

5.1.6 Delivery system

This is a final working version of the expert system used by end users, or
incorporated into an embedded system. The delivery system usually has to
be fast and perform well with restricted resources in terms of processing
power, storage space, user-interaction equipment etc. Sometimes the
delivery system is called the performance system or target system (not to be
confused with target domain and real system). The hardware needed for its

29. Most KBS-development projects last over long periods of time. It is hard for the
participants to remember the details of how models were formulated without some kind of
documentation. A computer-based prototype knowledge-base with proper browsing tools
can function as a common shared memory for knowledge-engineers and experts which
provides its own continuously updated documentation.
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operation is called the delivery system platform, and the software needed is
called the execution environment.

5.2 Important qualities for reducing KBS 
development time

In the future, the knowledge engineer will have libraries of components of
the type described in chapter 2 for developing prototype knowledge-bases.
Components, knowledge-bases and test cases from other projects can be
made available as initial building blocks and sources of knowledge
engineering know-how. This will produce far more efficient
communication channels between knowledge engineers than the written
word, although a pre-requisite is that the contents and workings of existing
systems are easily accessible through browsers and different types of
visualization tools. KBS development time can be reduced by supporting
reuse of previous know-how, but support must also be given for the
knowledge modelling of new domains.

In summary, the following features should be provided by a KBS
development environment for reducing the time needed for KBS
development:

1) High visibility, i.e. a knowledge acquisition tool should provide
support for interactive inspection and navigation through models
of knowledge.

2) High incrementality, i.e. the knowledge and data acquisition tools
should enable flexible interactive change and manipulation of
models of knowledge and facts.

3) Support for incremental development of meta-models. The meta-
models should be used as specifications for the design and
(automated) implementation of knowledge and data acquisition
tools that provide high visibility and incrementality.
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6 Observations from the 
Development of a Knowledge-
based Intelligent Front End

In the previous chapters a framework was described for knowledge
engineering in general. This chapter reports observations from practical
knowledge engineering work done in KEE [Intellicorp 87].

The work on an intelligent front end for structural design was performed in
a collaboration project with the Department of Mechanical Engineering
[Orsborn 91][Orsborn 93]. It covers areas that require competence from
both disciplines.

The chapter will very briefly describe the problem studied, and summarizes
the observations that are relevant for the topic of this thesis.

6.1 The task of an intelligent front end for a 
CAE30-system

Mechanical engineering is one of many disciplines that make considerable
use of software systems for assisting in engineering tasks. Such computer
aided engineering systems often become very complex. Efforts to make
them easier to use seem to have a high yield potential in the form of
increased engineering productivity and improved quality in product
development.

An intelligent front end (IFE) is software that relieves the engineer from
some of the complexity of the underlying CAE-system [Bundy 84]. It
allows engineers to define inputs to CAE-programs in domain-specific
terms, without having to know much about computer-related details such as
input file formats, program commands, naming conventions of objects
stored in databases etc. The output of the CAE-system is transformed back
into domain-specific representations that are easy for the engineer to
interpret.

There are many subtasks for an intelligent front end that can be
characterized as routine design31. The input files are assembled with the
engineers high-level problem description as a kind of requirement

30. Computer Aided Engineering
31. Characteristics of a routine design task are mentioned on page 12.
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specification. Knowledge is needed for selecting relevant CAE-analysis
programs and routines, for supplying programs with additional data and
analysis models relevant for the current problem, and for pure
transformation of parts of the information supplied by the engineer into
formats readable by programs.

Generated output may need additional post-processing that also depends on
how the problem was formulated. The selection and execution of relevant
post-processors can also be handled by an IFE.

6.2 KBS features for building and maintaining 
an IFE

The environmental conditions for an IFE are more demanding than for
traditional software products. It must be maintainable by the company or
organization that uses it. New modified versions of CAE-software
components continue to appear and new in-house programs are developed
to meet new requirements. The IFE is the glue between them and must
continuously be updated with knowledge of changes in the environment. It
must provide the facilities of the CAE-system to the engineers, without
encumbering them with otherwise necessary routine work.

Knowledge-based systems are suitable for the IFE-task because of the
solution transparency and the explanation possibilities. Any erroneous
behavior must be easy to detect and correct immediately. In general, errors
generated when using a CAE-system with support from an IFE are much
less frequent than without it.

To build an IFE application for a given CAE-system, a suitable meta-model
for its engineering domain must be found. The meta-model serves as
specification of the knowledge structures needed for keeping track of all
details and relations. Besides the target engineering domain, models of the
CAE computing domain (i.e. a model of the execution environment for the
IFE) must also be present to keep track of files, programs, substructures in
files etc. The number of details to be specified becomes large, even if the
domain is simple and the target CAE-system just consists of a few
programs. To cope with the complexity it is very important that the IFE
keeps track of all the relations itself. It must have a good user interface that
can visualize all aspects to assist the engineer responsible for system
maintenance to maintain a good understanding of its workings. Changes to
the IFE will not be made very frequently, so good support is needed for
recalling its workings. The IFE should be its own documentation. Paper
documentation concerning changeable aspects would introduce an
considerable update bureaucracy.

To summarize, visibility and incrementality have a similar importance for
IFE applications as they have for general development environments for
knowledge-based systems.
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6.3 An IFE for damage tolerance design on 
aircraft structures

In the collaborative project, the target CAE-system for studies is a set of
programs developed and used by the SAAB Aircraft Division32. The
domain is damage tolerance design, including crack growth calculations for
predicting the life-time of aircraft structures. An IFE-prototype has been
developed that supports the generation of input-files to a program33 that
does the actual crack growth calculations. With the help of an informative
graphical user interface, the engineer can, for instance, enter the
information needed for specifying one crack growth calculation. This
includes, among other things, specifying a crack geometry (See Figure 3 on
page 43). The IFE checks the input for completeness and permissibility,
and then generates an input-file consisting of command-sequences,
parameters, etc. to the analysis program.

Orsborn from the Mechanical Engineering Department has developed the
domain model of the target domain, while I have concentrated mainly on
user interface and general domain modelling questions. At one
development stage, the prototype contained more than 900 objects of which
350 were rules. During a consultation a case-model is built, usually
consisting of about 70 instances of concepts. The implementation has been
performed in KEE on an Apollo DN3000 workstation.

6.4 Method
The work on the IFE problem began with studies of similar work (e.g.
[Bundy 84]), the domain [Fredriksson 86], manuals for both the CAE
software [SAAB 90][Ansell 88] and the KEE-system [Intellicorp 87].
Following this a collection of requirements for an IFE was formulated.
Iterative development of prototype knowledge-bases was very helpful for
both acquiring a better understanding of the problem, and discovering and
documenting the concepts and relations of the domain.

The knowledge-base browsers worked as tools for developing ideas. Many
insights were gained by the ability to study the graphical structure of the
knowledge-base as it emerged. Although after some time when the
conceptual model began to stabilize, it was discovered that support for
flexible visualization and manipulation of models (e.g. instantiations of our
meta-model) was lacking. The user interface tools we found in KEE only
supported visualization and interaction with static concept structures. And
these interfaces had to be written by hand. Recall here that there is a
difference between the user interface for the end-user and for the KBS
developers. The support provided for building the end user interface was in

32. Acknowledgements to SAAB for support with domain expertise, software and
documentation.
33. The program is called CAFE for Computer Aided Fracture Engineering [SAAB 90].
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some respect adequate, but the interfaces for the knowledge engineering
work we were doing could have been much better. 

Our problem solver generated case models (e.g. a test case model for a
particular crack growth calculation) dynamically. These needed to be
inspected for debugging and gaining better insights in what further
relations to model. The KEE-browsers were slow and did not display the
interesting domain relations and attributes of the case models in an efficient
way for inspection and manipulation. If such support had been available,
our work on finding an adequate meta-model of the domain would have
progressed much faster.

The lack of adequate visualization tools was early recognized as a problem
of general importance. Therefore it seemed to be a good idea to work on
finding a satisfactory solution. The resulting user interface software
architecture (UISA) was first described in [Johansson 91], and an improved
version is given in section 18.2 on page 151. A prototype was developed
for verifying and tuning the UISA. It was built in a commercial object-
oriented Smalltalk-like programming environment, Actor, that runs on a PC
under Microsoft Windows34[Duff 86][Whitewater 90]. The PC prototype
was developed far enough to verify that there were no logical bugs in the
UISA-design, that it could be made fast enough, and that a selection
mechanism and other supporting functions could easily be incorporated.
The UISA-part of that prototype contained 18 classes of reusable user-
interface components, and the test-application about 30. The system-
supplied classes used for abstract datatypes, window management etc. are
not included in these figures. Later, parts of the software architecture in the
PC-prototype were re-implemented in KEE to support the IFE-prototype.
Unfortunately this implementation was too slow to provide any practical
support for incremental work with dynamically generated instance
configurations of the meta-model, but it works well for demonstrating the
IFE’s end user interface for the domain engineer. Figure 3 on page 43
shows a user interface object for editing the attributes of an instance of the
class CRACK_GROWTH_GEOMETRY_MODEL that is modelled within
the knowledge-base. The functionality of this user interface object has been
implemented with the UISA. The diagram supports the domain engineer in
recalling the names and the purpose of the different attributes of the
geometrical model. The fields below the diagram make the values of the
attributes directly accessible to and editable by the domain engineer. The
smaller figure above shows a brief sequence of the command input file for
the fracture analysis program. Sub-sequences such as the one given are
generated automatically by using information stored or computed in
knowledge-base objects.

34. This was summer 1990. At this time, the state of software development environments
for window systems under SUN-UNIX was rather confused. There was actually only one
development environment that fulfilled the requirements of incrementality and stability for
the development work. But the windowing software of this Smalltalk-80 based system was
also in danger of becoming obsolete in the next version so it was ruled out.
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6.5 Discussion
The development towards an acceptable domain language in the form of a
meta-model is an iterative and time-consuming process when it is hard to
gain access to a domain expert who has thought in detail of the target
domain at that level of abstraction before. One knows what instances of
target domain models should be able to describe, but with help of which
concepts i.e. how should the domain be structured into objects, properties
of objects and object relations? Which inferences should be made over the
object structures i.e. what is the deep knowledge? Experiments with
formulations of concept structures in prototype knowledge-bases have to be
made in order to gather information and form concentrated concepts to
reason about.

For our domain many meta-models seemed to be adequate. Transformation
of one meta-model to another seemed to be possible, where the
transformation implied moving attributes and relations between certain
object classes. The author’s advice is that when one discovers that such
transformations seem possible, it is better to stick with one choice of the
affected part of the transformable meta-model and proceed with modelling
the other parts. Otherwise the danger is to rebuild and change the prototype
knowledge-base more because of what is currently pre-occupying the
knowledge engineer than of what later will prove to be practically useful.
When the knowledge-base is large (i.e. the meta-model contains more than
fifty classes), it may not be obvious whether one is putting effort into
rebuilding the meta-model of the prototype knowledge-base into different
almost equally valid transformations, or if one is actually proceeding with
the modelling process. Progress is recognized when conceptualizations are
found that significantly simplify the overall structure of the meta-model
without losing any functional properties. In many cases, the meta-model
can be greatly simplified by finding a “correct” set of “orthogonal” concept
formulations. Some transformations have to be experimented with in order
to reveal such simplifications. However, for many parts of our meta-model
there was no such adequate simple and clean structure because the target
domain actually is complex. Understanding which meta-model is the better
has to come from experiments, i.e. by testing how well each meta-model
applies for modelling a set of test cases. The problem is that no such test
case can be prototyped without help of an at least to some extent completed
meta-model. Therefore, hesitation in designing parts of the meta-model
may delay the modelling process more than a temporarily satisfying design
decision. Inconsistencies and weaknesses in such temporarily designed
parts of the meta-model are discovered and can be redesigned when the test
cases are built. Trying to figure out a good meta-model without help from
experiments that focus attention on real problems is difficult. This is
particularly the case when the domain is complex, making it almost
impossible to pay attention to all the interacting parts at one time.

Despite these arguments in favour of completing a “prototype” meta-model
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in order to detect flaws in it, if the development environment gives
insufficient support for experimenting with test-case instantiations of
different meta-models, one test example may cost weeks of tedious
implementation time. Therefore it is natural to hesitate and try to solve the
problem on the meta-model level (with perhaps insufficient understanding
of the real influencing factors) in order to “get it right” from the beginning
and save implementation effort.

Creativity and productivity seemed to be highly correlated to the speed of
the knowledge-base browsers. This was best demonstrated by a certain user
interface functionality that took less than two days to develop in the Actor
programming environment. To re-implement it in KEE on the system
configuration we had took more than one week. Each part of the UI-
functionality was easy and straightforward to implement. The problem was
in establishing correct symbolic references between the different
interacting parts of code. Without high-speed browsers, the re-
implementation was frustrating work.

Although rather slow, KEE’s graphical knowledge-base browsers were
invaluable for recalling work with long interruptions (months) in-between.
In most cases it took much less than an hour to recall the working context
and be productive again. 

The possibility to refer to, and operate on, objects by pointing is
invaluable. We have frequently been working with object names such as
GENERIC_CRACK_GROWTH_GEOMETRY_MODEL_MODELLING.169. It is
questionable whether abbreviations can be remembered while performing
creative incremental work on many parts of a knowledge-base that contains
almost a thousand different objects.

To conclude the discussion we can say that enhanced possibilities in
accessing, inspecting and operating on instance configurations (i.e. test
cases) of different meta-models would have a strong positive influence on
the productivity of knowledge engineers and domain experts. Support for
building interaction tools of this kind should be provided by the KBS
development environment since they require considerable skill and effort to
implement.

Part I of the thesis ’Properties of Knowledge-Based Systems for
Engineering’, has described the vision of future knowledge bases we had in
1991. It guided and motivated the development of the systems described in
Part II and the theory presented in Parts III and IV.
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FIGURE 3. A user-interface view of a knowledge-base instance of the class 
CRACK_GROWTH_GEOMETRY_MODEL. The view 
contains only one object editor, that in turn holds eight fields 
which allow editing of the attributes of the knowledge-base 
instance. The KB-instance is used to hold facts about a crack 
growth geometry model. The smaller picture shows a 
command sequence that is generated from the intelligent front 
end (See 6.3 on page 39) as input for a CAE-program that 
performs crack growth calculations.

GEOMETRY
GEOMETRY = 3DIM_330(A,1.27,1.27,100,5.0,10.0,0,Y)
EXIT

 Subsequence of the input file to the CAE-program:
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Part II Experience from 
Development 
Environments for 
Product Modeling 
Systems
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7 Introduction to Part II

7.1 Overview
This part describes practical experience from developing a product
modeling system using the iterative KBS development process described in
chapter 5.

Chapter 8 describes ProCAD, a product modeling system for industrial
turbine and power plant system design. ProCAD provides an example of
what a product modeling system is, and why it poses certain requirements
on the development environment and its underlying software components.

Chapter 9 describes the software architecture for the major components in a
PMS, and the meta-database based development platform that was used for
ProCAD. This chapter is a revised version of a paper that was originally
presented at the ADB94 conference [Johansson 94].

Chapter 10 describes the source code generation technique introduced in
chapter 9 in more detail. This technique significantly speeds up the
implementation and maintenance of the product modeling system. For the
system developed at ABB, the generated source code was about 10 times
the size of the source code generators.

7.2 Readers guide
Chapter 8 can be read to gain some understanding of the engineering
domain of industrial turbine system design, and the complexity of the
functionality that this type of product modeling system must provide.

Chapter 9 is essential for the understanding of the meta-data-based
software engineering approach and the utilisation of the theory introduced
in Part III and Part IV. 

Chapter 10 is not necessary for understanding the theory presented in Parts
III and IV, but contributes with an engineering approach to source code
generation that has proven to be of significant value in practice.
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8 ProCAD - A Product Modeling 
System for Power Plant System 
Design

8.1 Introduction
ProCAD is a product modeling system for power plant system design. It is
the result of a joint research and development effort of the Department of
Computer and Information Science at Linköping University and the power
plant engineering and manufacturing company ABB STAL.

ProCAD is used for the system design of steam turbine, gas turbine,
combined cycle, and pressurised fluid bed coal combustion (PFBC) power
plants. A combined cycle power plant uses both steam and gas turbines to
get a better exchange in the transformation of the energy produced from the
burning of fuel into electricity. The coal combustion technique in a PFBC
power plant, in combination with advanced smoke cleaning, provides an
environment-friendly alternative to traditional coal power plants.

FIGURE 4. Photo of a steam turbine power plant from ABB STAL.
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The product model of a steam- or gas turbine plant contains descriptions of
many hundreds of functional components: turbines, electrical generators,
pipes, pumps, valves, instruments, heat exchangers etc. The power plant
system designer can interact with the detailed information in the product
model database directly from the drawing environment in the CAD-system.

The development effort started in 1991 with a pre-study of the information
structures, processes and dataflows involved in turbine plant production.
The boarders of functionality for power plant system design were roughly
determined. The product modeling system was to provide an application for
drawing process and instrumentation diagrams of the power plant systems,
enable entering of data for components on the diagrams and generate
various lists and reports from the product model database. A series of
prototypes, based on an object-oriented domain model, were developed and
which demonstrated the concept.

The prototypes were tested with the design of real plants quite early. This
lead to requirements on an efficient CAD-drawing environment. In the fall
of 1992 cooperation with S&S Systemutveckling was started. They had
long experience of developing AutoCAD applications for different
domains. By basing the ProCAD prototypes on their commercial drawing
environment for 2D-diagrams, a professional environment was achieved.

In 1993 the system was put into production. At that time, the domain model
for the product model database had been revised and implemented in eight
successive prototypes.

In 1994 cooperation with the compiler development company Softlab was
started. They augmented the development environment with source code
generators for deep copying functions for product models in the database.

Since then, two revisions of the domain model and the product model
database has been made on the production version of ProCAD. The
revisions included conversions of the developed production power plant
product models to the new database schema.

ProCAD is now regularly used by about 50 engineers at ABB. More than 80
steam- and gas- turbine power plants of the size of 10-100 MW and several
PFBC power plants have been designed using the system.

8.2 The ProCAD system architecture
Figure 5 on page 51 shows the system architecture of ProCAD. The product
model database manages objects and the integrity of the engineering
structures in the product models for the plants. The implementation has
been made on a relational database management system (DBMS) from
Sybase. Through the browser-, CAD- and 4GL35- client applications, the
engineers can inspect the product models, and create, update, and copy
various complex product structures.

35. Fourth Generation Programming Language
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The plant browser application allows a project manager to navigate and
manipulate the major structures of the plant models. He may, for instance,
build the structure of a new plant by creating the objects that constitute its
major “part-of” structure. Some of the objects represent different systems
in the plant, such as turbine system, lubrication system etc. Within the plant
browser the project manager can assign user access rights to the
substructures of, for instance, a turbine system. In this way he can delegate
the task and authority to develop the details of systems to different system
engineers on his staff.

A turbine systems engineer can use the AutoCAD application to draw
diagrams which specify how different functional components in a turbine
system are connected. These Process and Instrumentation Diagrams
(P&ID) show how the steam is processed through different turbine
components, and where instruments are placed that measure pressure,
temperature etc. There is an interactive interface between the P&ID CAD-
application and the product model database. The systems engineer can, for
instance, select an instrument on the P&ID drawing and bring up a form
that provides read and update facilities of the data for this instrument object
in the product model database.

FIGURE 5. Architecture of the ProCAD product modeling system for 
power plant system design.

Client applications for data entry and report generation are developed using
modern 4GL-tools with an SQL-interface. Currently, Microsoft Access is
used for user-friendly data display and generation of reports.

8.3 Outline of the ProCAD domain model
The domain model is a precise design specification of the objects and
structures in the product model database. Figure 6 shows an overview of
the major objects and structures in the ProCAD domain model. The boxes
represent distinct classes of objects, and the lines represent relationships,
with intervals of min..max at the ends telling the minimum and maximum
number of object instances of the class that may participate in a
relationship. A star “*” means infinity. A black diamond at for instance the
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Plant class means that a plant is composed of blocks. The overview only
shows 10 classes and 10 relationships. The actual domain model contains
about 50 classes and relationships, and more than 400 attributes. 

FIGURE 6. Outline of the domain model for ProCAD.

8.3.1 Plants, Blocks, Sections and Systems

The plant objects contain data about a plant. There are, for instance,
attributes like catchword, customer_name and remark. A plant may consist
of several blocks. A block is typically an individual building containing a
complete operational plant. The customer may need a multiple of the power
of an existing plant design, and it is sometimes advantageous to build
several copies of existing proven designs instead of developing a new one.

A section can be a major functional unit within the same power plant, for
instance a boiler or a steam turbine. It may also be a functional category of
equipment such as internal- and external electrical systems or systems for
cooling. Each section is divided into several systems. For a steam turbine
there is a turbine system, a lubrication system, a generator system etc.
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8.3.2 Aggregates, Components and Pipes 

An aggregate is a functional unit within the system. It may be a heat
exchanger, a pump, a valve, a tank, etc. Aggregate objects within the
product model database have attributes for different designations,
description, size, weight, location, various references to detailed drawings
etc. Aggregates may be decomposed into several components of different
types.

A Pipe object contains attributes for different designations, location,
dimensions, medium, test_group, drawings etc.

8.3.3 Mechanical Limits

A mechanical limit documents the interface between an aggregate and a
pipe. The object contains attributes for location, connection standard,
references to connection type drawings etc. 

A special type of mechanical limit is a delivery limit. Such an object
documents an interface between systems developed by different system
engineers or suppliers. Values for medium, heat, pressure, flow, dimensions
and location are specified for the delivery limit, and serve as a contract on
what the different system engineers or construction partners have agreed
upon.

8.3.4 Instruments and Instrument Settings

Each system has a set of instruments that supply the control system with
information. They measure, for instance, pressure, temperature or
vibrations. An instrument may have several instrument settings. A setting
documents a threshold when a certain control signal should be activated.

8.4 The plant browser application
The plant browser shown in Figure 7 allows a project manager or systems
designer to browse the hierarchy from Plant down to System. With the
correct privileges the hierarchy can also be edited. The first listbox shows
the plants in the product model database. By selecting one, its
corresponding blocks are listed in the block listbox. When the user selects a
block or section, its corresponding sections or systems are displayed in the
listbox to the right.

A product model database can contain hundreds of plants and thousands of
systems. After the correct plant is selected, it only takes three clicks to gain
access to the detailed data of any of its systems on a form. 

The plant browser also provides functionality for deep copying an entire
plant or a selected set of systems, including registered CAD-drawings that
contain references to objects in the copied product model.
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FIGURE 7. The plant browser.

8.4.1 Project-specific attribute assignment 

Various object types in the product model, such as aggregate, pipe,
instrument etc. each have their own predefined attributes from the domain
model. A new power plant project may require additional project specific
attributes and default values for its different object types. A certain country
may, for instance, require a special certification on the pipes according to
its national standard. References to this standard must be included in the
product model so that they can be extracted on reports and documentation.
These kind of project-specific fields can be configured individually for
each plant by its technical project manager without support from any
computer specialist. The configuration functionality is available in a form
that appears when a plant is double-clicked in the plant browser.

8.4.2 Assignment of update access rights

A gas- or steam turbine power plant development project may take from 10
months to more than a year from when an order is placed by the customer
until the plant is put into production on site. The same PMS database may
be used for the development of twenty orders in parallel. For each project,
different engineers are assigned to develop different substructures in the
product model of the plant. To support quality assurance and boarders of
responsibility, access privileges to the substructures must be configured
individually by the technical project manager for the engineering of the
plant.

A project manager can configure which database users can update a system
in a certain plant without support from a database administrator. This is
done on a form accessible from the plant browser.
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8.5 The P&ID application
The process and instrumentation diagram CAD-application is built on
AutoCAD. Figure 8 shows how the application looks on the screen while
editing a turbine system. 

The application window is divided into four areas: the pulldown menu with
“File Edit” etc.; the drawing area, with an additional menu to the right; and
the command line at the bottom where commands and LISP code can be
entered directly.

FIGURE 8. P&ID CAD-application editing a turbine system drawing.

The menus serve as front ends to the textual command language and lisp
programming language. The menu choices call P&ID-application specific
macro functions. All normal tasks of the turbine system engineers are
supported by such macros.

Figure 9 shows a zoomed-in region of a P&ID. It contains a heat exchanger,
two valves, two instruments indicating the position of the switch valve and
two pipes with flags. By selecting a menu-command and pointing to any of
these components, the engineer can bring up a form from which data in its
corresponding object in the product model database can be edited.
Figure 10 shows the form for the valve “LAB30AA002”. There are more
than 30 fields on this form. Some of them, such as designations and
description are entered early in the design phase. Others may not be
applicable for the aggregate in question and are never specified. The fields
and listboxes on forms will change as new versions of the domain model
are implemented. The drawing environment itself is insensitive to most
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such changes.

FIGURE 9. A zoom-in of a P&ID drawing.

FIGURE 10. A form for editing data for an aggregate in the product model 
database.
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8.5.1 Drawing environment functionality

The drawing environment has a rich set of functions for editing the
graphics of a P&ID. It also provides a library of drawing frames for
different purposes. The drawing frames have a predefined set of layers.
Layers that are visible on the drawing behave like a stack of transparencies.

Different customers require different designations on the different
component types, depending on what is specified in national standards.
Besides the customer designation system, ABB maintains two internal
designation standards. One that is there for historical reasons and was used
by the previous STAL-Laval company, and KKS (Kraftwerks Kennzeichen
System) which is a European standard for designation of power plants.

By keeping the designation systems on separate layers in the drawings, the
same drawing can be plotted for different documentation purposes,
showing only relevant information. The layer management functionality
also enables the same drawing to be displayed with hidden details. This is
useful for the sales-, tender and documentation process. 

To be able to provide all combinations of information presentation, a P&ID
drawing has about 60 layers.

8.5.2 Symbol library

From the “Symbols”-pulldown menu, the designer has access to more than
300 symbols. After selecting the main category from the pulldown menu,
the appropriate symbol is chosen from a dialog box as shown in Figure 11.
The symbol can be selected either by the textual name in the listbox to the
left, or by its picture. Some additional symbol documentation can also be
accessed directly from the dialog box.

FIGURE 11. Menu providing 20 of the more than 300 symbols in ProCAD.
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8.5.3 Database functions

The P&ID application provides a set of functions for managing the product
model database (PMDB). Besides logging in to the correct database from
the CAD-system, it provides functionality for listing and editing various
categories of product model objects, and assigns and updates connections
between symbols on the CAD drawing and objects in the PMDB.

Since the CAD-drawing and the product model database can be updated
independently, the consistency between the two must be maintained. The
menu command macros aim to support this, but using low-level CAD-
commands from the command line it is easy to add or erase a symbol
without performing the corresponding operation on an object in the PMDB. 

To make sure that the drawing and the product model database are
consistent, checking functions are available. If a symbol has no
corresponding database object, the checking function marks this symbol on
the drawing with a special report symbol that is placed on a message layer
(see Figure 12). The checking function allows the designer to directly
identify which ones of maybe one hundred symbols on the same drawing
are not connected to an object in the product model database.

FIGURE 12. Graphical database reports directly on the drawing.  
The symbols marked with a crossed over database have no 
corresponding object in the product model database.

8.6 4GL applications
Several 4GL applications have been developed in Microsoft Access. One
report generation application provides more than 50 different reports that
are generated from more than 40 specialized tables or views in the product
model database.

The reports are typically very information-dense, and prepared for various
engineering, manufacturing, assembly or maintenance tasks.

The report application has some support forms for browsing the product
model database, and select the appropriate data and report formats for
display or printout.

There is also an application for form-based entering of data directly into the
product model database.
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8.7 Measurements for product models
More than 80 plants have been designed using ProCAD. The figures
sketched here are presented to give an idea of the size and complexity of
the P&ID drawings and plant product models. The figures are derived from
one production database that contained many small gas turbine plants. 

A typical plant has one block containing three sections. The average
section consists of 4 systems, but this varies. About a third of all sections
are implemented by another subcontractor and only entered in the PMDB
for documentation purposes. Otherwise, a section with more than 10
systems is not unusual. Systems are very different, but some kind of
average system contains about 20 aggregates and 15 instruments. Half of
the aggregates have one to three components, and about half of the
instruments have one to three settings, but most of them only one. 

The average number of pipe objects in a system is 12, but this is also very
varied. Systems with more than 30 documented pipes are not unusual, and
about two thirds of all systems have no documented pipes at all.

MechanicalLimits document an interface to other systems and to external
subcontractors. About half of the systems contain documented mechanical
limits, and these have on the average seven mechanical limits. About three
percent of the aggregates are connected to a mechanical limit, and about
five percent of the pipes.

In summary, a typical plant product model contains one block, four
sections, a little more than ten systems, some hundreds of aggregates and
instruments, and about fifty documented pipes.

8.8 Summary
ProCAD is a PMS for turbine and power plant system design that has been
developed in a cooperation project between the Department of Computer
and Information Science at Linköping University and ABB STAL. The
work started in 1991. Since the system was taken into production in 1993,
more than 80 plants have been designed.

The PMS consists of three client applications connected to a server of the
product model database. The plant browser applications allows a project
manager to deep copy entire plants or selected sets of systems, to specify
project specific attributes for a particular plant and assign update access
rights to individual system designers. The P&ID application provides
advanced drawing functionality, a symbol library with more than 300
symbols and database functionality for checking the consistency between
CAD-drawings and the product model database. The 4GL-report
application provides more than 50 different reports.

Plant system product models for industry turbines vary in size. In the
sample database described in section 8.7 a typical model contains about
1500 objects.
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9 Using a Meta-Database 
to Implement 
Product Modeling Systems

9.1 Introduction
A product modeling system (PMS) is an object-based computer integrated
development environment for a specific class of advanced products. PMSs
have a strong potential for increasing engineering productivity and ease the
management of complex high-tech products.

There are however three major obstacles that severely prevent the
development of long-term successful PMSs.

I The complexity of the product itself.

II The extensive amount of software engineering skills needed for
design and implementation of a PMS.

III Computer technology is under continuous development and a PMS
implementation will become obsolete within a few years.

To overcome these, we have taken an approach which is depicted in
Figure 13. The key idea is to separate the knowledge of product experts and
software engineering experts with a clean and small interface. In our case,
this is achieved by an object-oriented domain model (OODM) which can be
represented graphically by object model diagrams.

The core of a product-specific object-oriented CASE model is the OODM.
The OO CASE model serves as a PMS object system design specification
which is expressed in a graphically representable formal language. Its
semantic expressiveness is similar to the data definition constructs of the
product data modeling language EXPRESS [EXPRESS88][STEP92a]36,
but provides more flexible facilities for maintenance, documentation and
source code generation.

36. EXPRESS has an object-based flavour and is a fundamental part of the STEP standard
ISO 10303, “Product Data Representation and Exchange” which has its roots in the early
1980's. The purpose of our object-oriented domain models is primarily to accelerate the
development of practically useful PMS-prototypes. 
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FIGURE 13. Approach to overcome the three obstacles to PMS 
development.

Our object-oriented domain models and object model diagrams have
similarities with Chen’s ER-diagrams [Chen76], but have their formal
ground in the thorough theoretical work on infological models performed
by Sundgren [Sundgren73] [Sundgren89] [Sundgren92]. We use a compact
graphical notation for our object model diagrams for describing classes,
relationships and attributes, see Figure 19 on page 73. Object model
diagrams and reports generated from an object-oriented CASE tool can be
understood by both product experts and software engineering experts and
serves as communication medium between the two engineering disciplines.

Software engineering companies who develop tools such as databases,
CAD-systems and user interface toolkits can develop knowledge in how to
transform an OO CASE model into a working implementation for their own
specific software tools.

Once the transformations have been formalized in a programming
language, software engineering companies can package and sell their
software engineering knowledge in the form of application code generators.

If the domain model of the PMS development platform in Figure 13 can be
standardized, it would enable many software tool companies to implement
applications code generators that would be applicable to many engineering
companies’ PMSs, and thus open up a competitive and developing market.
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This chapter first describes the above-mentioned obstacles to PMS-
development and then presents the architecture of the major software
components in a product modeling system in more detail.

The meta-database based architecture of our PMS-development platform is
described, and exemplified by an implementation of a small object-oriented
domain model.

Section 9.7 describes the domain model of the meta-database in more
detail. This section should be read carefully, because the theory presented
in Part III assumes this as pre-knowledge.

The chapter concludes with some experience from how we used the
development platform during the development of ProCAD, and some
conclusions.

9.2 Problems while developing complex product 
modeling systems

It is no easy task to develop a PMS which can be maintained as a versatile
tool for a high-tech product engineering company. The products contain
thousands of details, and engineers from many disciplines must cooperate
using different engineering models that have complex relationships.

Each product must be customized according to customer requirements and
the special conditions at the location of operation. Once delivered, the
product must be operated and maintained during a lifetime of several
decades.

The following three sections give some additional details about why it is
hard to develop a long-term successful PMS for this kind of product.

9.2.1 The complexity of the product itself. 

In addition to the different interrelated engineering models there are the
aspects of scale and development time. A typical steam turbine plant, for
instance, contains thousands of articles which are assembled and
interconnected in a complex fashion. A project can take years to complete
and may involve a hundred people who create and use different sorts of
product-related information.

Thus, the PMS must provide security functionality for authorization of
access privileges for different user categories. It must also allow privilege
assignments to individual users who are to work on a subset of several
parallel product models that belong to concurrent development projects.
For example, a turbine systems engineer must be able to manipulate the
turbine systems for the three turbine plants he has been assigned to, but not
the other fifteen that are being developed in parallel and stored in the same
database.
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ISO 900037 puts demand on a secure system for quality control. Hence, the
PMS must provide configuration and version management including
locking of inspected and approved submodels to secure certified subdesigns
from unauthorized changes. 

9.2.2 The design and implementation of a PMS 
requires extensive software engineering skills. 

The software engineering process of a PMS includes designing an adequate
OODM for the product. This is a heavy, iterative process. Several
engineering disciplines must work together and no single person has a
complete understanding of all aspects of the product.

Without adequate CASE-tools the requirements- and design specifications
become large and difficult to manage and understand. This is a threat, since
the design documentation has to be iterated efficiently with knowledgeable
product experts who are a scarce resource and do not have much time. If the
project loses their interest and high-quality influence, it will severely affect
the acceptance of the resulting PMS.

A PMS may need to integrate CAD, CAE, CAM38 and economic
information systems. This requires software engineering skills in CAD,
databases, user interfaces, different programming languages and so on.
Software engineers with this comprehensive amount of software
engineering knowledge are rarely available in enough quantity at the
engineering company itself. Using software consultants without knowledge
transfer to the engineering company can make it dependent and vulnerable.

9.2.3 The fast development of computer technology. 

This is a problem which all developers of large-scale software systems
fight with today. New advances in software and hardware technology will
in a few years render a developed system obsolete.

It is hard for an engineering company to decide which CASE-tools,
database systems or user interface development toolkits to purchase. An
investment is expensive, and often ties the company to a certain set of
software products for a long time. The software maintenance task quickly
becomes a major problem. Levering a PMS to a new generation of
computer technology may become an extremely expensive project,
especially if its design is stored in old-fashioned “closed” CASE-tools.

37. ISO 9000 is a standard for quality assurance (QA). A product development company
can be certified according to ISO 9000. To get the certification, the company has to provide
proof that they manufacture their products according to procedures which guarantee an
adequate QA. Part of the proof is given in the form of documentation of the QA-
procedures, and these have to fulfill the requirements stated by the standard. 
38. Computer Aided Manufacturing
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9.3 A generalized software architecture for 
PMS

Figure 14 shows a generalized architecture of a product modeling system
for use in a concurrent engineering environment. The architecture
described assumes complex products with long development times and the
need for locking of checked and certified subdesigns for quality assurance
and prevention of accidental changes due to human mistakes.

The product model database manages object-oriented engineering
structures which have a large and complex database schema. Different
CAx39-applications need to manipulate and interact with these structures
on an efficient abstraction level. Engineers must also be able to browse the
product model database interactively, and create, update, and copy various
complex product structures.

A production version of a PMS needs support for project management. This
can be provided by a project browser application. Is should enable a project
manager to choose different projects, navigate and manipulate the major
structures of their product models and assign user access rights to
individual substructures so that the task and authority to develop the details
can be delegated to different engineers.

To avoid accidental unauthorized changes to data by user-developed 4GL
applications, the access control system on the object and substructure
granularity must be implemented within the product model database. How
this is done is explained in section 9.3.1.

FIGURE 14. Sample product modeling system.

39. CAx is a common name for CAD, CAE and CAM which stand for Computer Aided
Design, Computer Aided Engineering and Computer Aided Manufacturing.
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An engineer can use a CAD application for the graphical design of different
parts of the product model. Different geometrical objects in the CAD-
drawings can have attributes attached that refer to objects in the product
model database. Similarly unique drawing item identifiers can be stored in
attributes of objects in the PMDB and thus refer to geometrical objects in a
CAD-drawing.

Traditional client applications for data entry and report generation can be
developed using modern 4GL-tools with an SQL-interface if the choosen
DBMS for the PMDB provides it.

There are other applications that need direct access to information in the
product model, for instance computer aided engineering (CAE) and
manufacturing applications (CAM). This is symbolized by the right side
CAx- and economy system application in Figure 14. 

Integrating logistics and purchase systems with the PMS can save large
amounts of boring and error-prone routine work, and provide economic
decision support to the engineers when choosing between different design
alternatives. Today careful economic analysis of a design is often omitted
because of the cost in time and effort to gather the needed economic data.

The following sections describe the software layers in the product model
database, the CAD-application and the browser applications. Structuring
the software into layers enables some of them to be generated automatically
from the domain model. Building the manually written applications around
generated layers makes their source code easier to understand and more
robust against later changes in the domain model.

9.3.1 Software layers in the product model database

Figure 15 shows the software layers in the product model database. The
bottom layer implements the database manager, which provides, for
instance, persistent storage, concurrency control, transaction management
and basic authorization of multiple users. This may be a commercial
relational database or a special PMDB client server application with
multiple user access control implemented on a commercial C++ database. 

The second layer provides a data definition language, a declarative query
language and preferably a library of abstract data types that can be used for
implementing various types of relationships and data structures in the
domain model.

In the future these two layers could be replaced by an SQL3 database.

Most DBMSs do not provide functionality for access control on individual
rows in tables or individual objects. This functionality is necessary if a
project manager is to be able to configure access rights to different users on
individual objects without support from a database administrator. The
configurable access control system can be implemented using triggers in a
relational DBMS, and calls to pre-condition checks in client callable
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methods in a C++ database.

The domain model dependent software layer implements the basic object
manipulation functionality and enforces domain model specific integrity
constraints. This software layer can be generated automatically by source
code generators.

The highest abstraction software layer in the PMDB is implemented
manually by the product-developing company. This may include common
routines used by many client applications or routines for different types of
expensive or critical data processing, for instance a deep copy function or
certification checking and design-state-changing functions.

FIGURE 15. Software layers in the product model database.

9.3.2 Software layers in CAD client applications

Figure 16 shows the structure of software layers in a CAD-client. The
border-surrounded software layers are implemented in the CAD-system.
They provide command-, and application programming language access to
the geometry database of the drawings and a user interface library. The UI-
library usually supports programming and configurations of various types
of screen-based menus, digitizer tablets and forms for entering data, to
mention a few examples.

The database interface (DBI) layer is purchased from the DBMS vendor of
the PMDB. It provides a library of DBMS functions that can be called from
a 3GL programming language (C, C++, Fortran). 

The CAD-DBI interface implementation depends on both which CAD-
system is used and the DBI of the selected DBMS. Its function is to convert
product model data received from the DBI into data structures that can be
manipulated from the application programming language of the CAD-
system. Similarly data created in the CAD-system must be converted to
formats that can be transmitted back to the PMDB.
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FIGURE 16. Software layers in the CAD-client.

The product model interface layer provides a domain model-specific library
of functions or methods for transparent manipulation of objects and
structures in the PMDB. It may also implement a library of functions for
form based editing of loaded product model data using the user interface
functionality in the UI-library.

The purpose of the layer is to give a domain model-specific naming
abstraction above the product model data, which makes manually written
CAD-applications more compact and easy to maintain.

The software in the product-oriented CAD-application layer is company or
application domain specific and implements the drawing functionality for
the particular application, including libraries of symbols and/or mechanical
components.

PMDB-related modules in this layer can, for instance, check the CAD-
drawing for consistency with the product model data. Other functions may
cache geometric design information taken from the CAD-drawings into
objects in the product model database. From there it can be used by
external CAE-applications or by programs that are executed directly in the
PMDB server.

Various processing results that are stored in the PMDB can be read back
into the CAD-system and visualised directly on the geometries, using
symbolic markers, texts or geometrical objects.

9.3.3 Software layers in browser applications

The layering structure of a browser application is similar to the one for a
CAD-application. It has a DBI layer and a GUI40-DBI interface. The
graphical user interface library layer provides the primitives from which

40. Graphical User Interface.
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high-level user interface components such as windows, object editors,
attribute editors, and various relationship editors can be built (see chapter
18).

The layer providing product model-specific UI-components contains
default layout and configuration declarations for the user interface objects
that will represent the information for different types of objects in the
product model. The declarations include datatypes, widget coordinates, and
small action procedures that are executed when the user presses buttons,
double clicks items in listboxes and so on.

The product model application layer must implement login facilities and
user interface access to some “root”-object from which browsing can start. 

FIGURE 17. Software layers in a browser application.

If the requirements are not a single application program provided as one
executable file, browser applications can, of course, also be implemented
using 4GL tools or internet browsers where the product model-specific UI-
components are, for instance, generated HTML-scripts.

9.4 Architecture of a PMS development system
Figure 18 on page 70 depicts the architecture of the PMS development
system we have used for developing ProCAD. It can be divided into three
parts. In the upper part there is an OOCASE tool for interactive graphical
design of object-oriented domain models. In the centre we have the meta-
database which is implemented on a relational database. The meta-database
can be read by source code generators written as SQL-scripts, which
generate the layers of the database- and application source code that are
specified by the domain model. The bottom part is the generated PMS,
which can be recognized from Figure 14 on page 65.

The OOCASE-program we use has its roots in an experimental system for
testing the validity of a novel user interface software architecture,
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developed as a thesis project [Johansson 91]. A special feature of OOCASE
is that it allows several smaller object model diagrams to depict related
subsets of a larger object-oriented domain model. In this way, a system
designer can concentrate on a smaller diagram which only shows the subset
of classes, attributes and relationships that are of interest for a certain
aspect of the domain model. There is less need for the traditional
“spaghetti” diagrams which “take up a wall” to get a grasp of the whole
model. Printed out, our PMS domain model consists of about twenty A4-
sized object model diagrams, defining different functional parts of the
power plant product model.

FIGURE 18. Architecture of the PMS development system.   
The CAx and Economy system are probable extensions.

Domain models can be exported from OOCASE in a record format or as a
batch file of SQL-insert statements. We use the relational database Sybase
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for implementing the meta-database. Classes, relationships, attributes and
other OO-domain modeling object types have their corresponding
relational tables. The SQL-batch inserts tuples representing domain
modeling objects into these tables. A system designer can interact with the
meta-database directly using SQL, or indirectly via a 4GL-tool such as
Microsoft Access.

Before code generation can be applied, the domain model needs to be
supplemented with implementation data that is dependent on the
programming language of the target tools. Standard data types, for instance,
have different keywords in different target languages. The keywords are
stored in the meta-database, and have to be associated with attributes in the
domain model. We have a set of stored procedures that add this extra
implementation information.

The code generators are SQL-scripts written in Sybase Transact-SQL
[Sybase 94][Sybase 94a]. They consist of select statements that combine
literal source code text strings with data from the meta-database and
produce a set of string tuples that make up the generated lines of source
code.

A code generation script can be seen as a source code template, which is
instantiated with data from the meta-database. When generating source
code for a relational PMS database implementation the templates typically
define different standard types of triggers and stored procedures.

For each class in the domain model P stored procedures are generated.
These are typically procedures that create, update, or delete an instance of a
class in the PMS database. See Figure 20 on page 75 for an example. Stored
procedures are pre-compiled within the DBMS and can be called from a
CAD-system by a remote procedure call. Such communications give fast
response times.

For a complex domain model with C classes, the number of generated
procedures becomes P*C. Data which is stored in one place in the meta-
database is duplicated to a large number of places in the generated source
code. Duplication factors of 100 are not unusual.

During the development of the domain model, an attribute of a class which
is heavily inherited may be changed. If the domain model-dependent parts
of the PMS implementation have been coded manually, such a minor
change may need manual changes to several hundred lines of source code
spread around many different source code files.

Tracking down the locations and make the changes may take a significant
number of hours even for a programmer who is familiar with the code.
Some places will probably be forgotten and bugs will appear later on.

Using source code generators, significant amounts of manual change and
debugging work is saved. While still working with prototypes, a complete
re-implementation of the domain model dependent parts of the system may
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be done in a few hours including manual work.

For our power plant PMS more than 50 000 lines of source code are
generated and it takes some time to recompile and reload it. For one version
of the ProCAD database, it took about half an hour to generate the source
code and execute the generated SQL-batches that create tables, stored
procedures and triggers. Note, however, that very little effort have been
spent on performance improvements of our meta-database implementation.

The main advantage of source code generation, which really speeds up the
PMS development process, is that the software engineer who performs the
re-implementations does not have to refresh his/her understanding of the
vast amount of details in the source code.

9.5 An object-oriented domain model example
Object-oriented domain models serve as a medium for communication
between product experts and software engineers. Figure 19 shows the
object model diagram of a simple domain model, containing 4 classes, 3
relationships and 18 attributes. The example is used to introduce the UML
class diagram notation. It also gives the reader an idea of what is stored in
the meta-database (further described in Section 9.7 on page 76).

The domain model describes a fictitious PMS database for a company with
several Departments. A Department-class has the two attributes
department_id and department_name. Each department can own an interval
between minimum zero and maximum infinity [0..*] products. Each
product must be owned by exactly one [1..1] department. Thus the class
Department has a one-to-many relationship department_products to the
class Product. A black diamond on a relationship end means that objects
instances at that end are composed of object instances at the other end. This
is a part-or relationship, as opposed to an more light weight association.

A product is described by a hierarchical structure of articles which has its
root in a main article. This is represented by giving Product an one-to-one
relationship product_mainArticle to Article. Article has a one-to-many
relationship owner_owns to itself, and thus an Article can be composed of a
hierarchical structure of sub-articles according to this domain model.

For the management of a PMS database we need some common database
attributes on each product model object. These are gathered in the class
DatabaseObject, which is inherited by all other classes in the domain
model. More about DatabaseObject’s attributes later.

Inheritance is represented by the symbol  followed by the name of the
inherited class. Such a superclass reference is easy to explain to non-
software engineering people. Just say that DatabaseObject represents a
copy of all attributes in DatabaseObject. This notation makes the diagrams
look clearer than drawing lines with an inheritance symbol which
inexperienced people easily confuse with ordinary relationships.
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Each object in the PMS-database needs a unique object identifier. Since we
use a relational database for implementing PMS-databases, we have chosen
64-bit object identifiers divided into two 32-bit standard long integers in
the key attributes highId and lowId of DatabaseObject. 

FIGURE 19. Simple PMS domain model example to describe the graphical 
syntax of our object model diagrams.

To ensure object identifier uniqueness amongst product models developed
in parallel PMSs, each PMS-database has been given a unique highId.
lowIds are generated from a counter that is ensured to always be larger than
a certain value calculated from the current time. In practice this works as a
reasonable insurance that the same object identifiers will not be generated
again, even after an old database backup has been restored. If one object
identifier is generated every second, a 32-bit counter will last for 68 years.

The attributes dtAdded and dtModified are time-stamp attributes which
store the date and time when the object was first added to the database, and
when it was last modified. These attributes are managed automatically by
triggers in the generated PMS database implementation. 

The attributes approved_by, checked_by, created_by and modified_by store
a login-identifier for the user performing the corresponding task. Using
triggers in a relational database, the modification of an object can be
inhibited if it has already been checked or approved. 
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9.6 Source code generation example
Figure 20 on page 75 shows an example of an automatically generated
stored procedure written in Sybase’s Transact-SQL. The procedure updates
a row in the table de_department where instances of the class Department
are stored. “de” is a two character prefix which uniquely identifies the class
Department within the domain model.

During code generation, the parameter names (@de_highid for example)
and the field names of the table are fetched from the attribute objects stored
in the meta-database. The same template type of update procedure can be
generated for all entities in the meta-database.

If the domain model is changed, for instance an attribute is added to the
class DatabaseObject which is inherited by Department, the procedure in
Figure 20 has to be regenerated. Examples of other automatically generated
procedures for the Department class are given in Table 1.

Procedures that manipulate relationships are bound to a particular class.
Examples of procedures that are generated automatically for the 1-N
relationship department_products are given in Table 1.

Table 1: Generated stored procedures for object handling.

Generated 
procedure Description

de_insert Creates a new Department instance. Return its new unique 
object identifier in the l-value parameters.

de_update Updates the attribute values of the Department instance. See the 
example in Figure 20.

de_delete Delete a Department instance whose object identifier is 
supplied as parameter.

de_select Select all attribute values for a department object with the 
supplied object identifier.

Table 2: Generated stored procedures for relationship handling.

Generated procedure Description

de_relAllProducts Select all attribute values for Product objects that 
belong to the department whose object identifier is 
supplied as parameters to the procedure.

de_relCreateProducts Create a new product object and connect it to the 
department object whose object identifier is supplied as 
parameters.

de_relDeleteProducts Delete a product object which belongs to a particular 
department object.
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The procedures are loaded into the PMS database server, and can be called
from a client application, for instance when a user selects a command from
a menu in the user interface of a generated browser application.

create proc de_update 
@de_highid obid,
@de_lowid obid,
@de_dtadded datetime null,
@de_dtmodified datetime null,
@de_approved_by char(5) null,
@de_checked_by char(5) null,
@de_created_by char(5) null,
@de_modified_by char(5) null,
@de_department_id char(8),
@de_department_name char(20) null

as
declare @result int
begin transaction de_update 

update de_department 
set /* key de_highid is not updated */  
    /* key de_lowid is not updated */  
    de_dtadded = @de_dtadded,  
    de_dtmodified = @de_dtmodified,  
    de_approved_by = @de_approved_by,  
    de_checked_by = @de_checked_by,  
    de_created_by = @de_created_by, 
    de_modified_by = @de_modified_by, 
    de_department_id = @de_department_id, 
    de_department_name=@de_department_name
where   de_highid = @de_highid 
  and   de_lowid = @de_lowid
execute @result=check_error_and_rowcount1 
        @@error,@@rowcount, "de_update"
if @result=0 commit transaction de_update 
else rollback transaction de_update 
return @result

go

FIGURE 20. Example of an automatically generated stored procedure41.

The technique of concatenating literal strings with meta-database data in
declarative SQL-scripts seems to be generally applicable for source code
generation of all types of textual programming languages. We have used it

41. In Sybase Transact-SQL, all parameters and local variables are preceded by ’@’. ’obid’
is a user defined type equal to a 32-bit integer. @@error and @@rowcount are Sybase
system variables holding a possible error number and the number of rows that were
affected in the last operation. 
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for generating code in SQL, C++42, LISP43 and textual user interface
definition languages.

9.7 The meta-database domain model
In the same way as a PMS-database is an engineering database described by
a PMS domain model, the meta-database is a software engineering
database, described by a meta-database domain model. As a matter of fact,
the domain model for the meta-database is actually stored in the meta-
database itself, and has been used for generating stored procedures and
meta-database browsers.

Figure 21 on page 82 shows an object model diagram for the meta-
database. It is helpful to keep a bookmark at this page for quick reference
while we explain the some of the important characteristics of the different
meta-database objects.

9.7.1 DBObject

All meta-database objects inherit from DBObject. It manages unique key
attributes for object identifiers (highId, lowId) and time stamping attributes
(dtAdded, dtModified). After the creation of a DBObject instance, the
current user’s login-identifier is recorded in the createdBy attribute. After
each modification to any attribute value within a DBObject instance, the
current user’s login-identifier is recorded in the modifiedBy attribute. In a
relational database implementation of the meta-database, this kind of
functionality can easily be implemented with triggers.

9.7.2 Object

Object inherits DBObject. Meta-database objects which are created by the
user inherit from Object. Most meta-database objects, such as Class, or
Attribute need a name and a short descriptive textual definition. When
working at an international company such as ABB, the PMS domain
models have to be coordinated between different sites in different
countries. Therefore it is useful to have an alternative name and an
auxiliary name that can document names in other languages. In our case,
we have used name for English names, altName for the Swedish names, and
auxName for German names.

In our implementation, the English names can have about 30 characters and
are used for source code generation. Sometimes, however, older target
languages do not allow such long identifier names and then a shortName
can be used instead. 

42. [Lippman 92] [Stroustrup 93]
43. [Steele 84].
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9.7.3 DataDictionary

There is only one instance of DataDictionary in the meta-database. This
instance is used for holding “global” meta-database variables, and
represents a “root” object in a part-of structure, from which the user can
navigate down to other domain model objects in an automatically generated
browser.

9.7.4 DomainModel

For each PMS-implementation, there is a corresponding domain model.
Instances of DomainModel represent the “root”-object of such a domain
model.

9.7.5 Class

Instances of Class hold class-related information. When generating source
code for a relational DBMS, the inheritance hierarchy is flattened, so that
leaf-classes have all their attributes stored in the same table. Only leaf
classes are relevant for generation of tables. To distinguish them from
inherited ones such as DatabaseObject in Figure 19, leaf classes have their
genSqlFlag set to TRUE.The prefix holds a two-to-four character prefix
that uniquely identifies the class within a domain model. This is useful
since many named code objects in generated code are related to a specific
class. Examples of named code objects are table related stored procedures,
triggers, or user interface forms for editing instances of a particular class.
As presented in Figure 19 on page 73, stored procedure names such as
de_insert, de_update and de_delete, are generated for the class Department.
If the name of a generated table for some reason cannot be the same as the
English name for the class, the system designer can override it by entering
something in tableName.

9.7.6 Relationship

Relationships in our domain models are binary. The connected two classes
are called class1 and class2. For a one-to-many relationship, class1 is on
the one-side, and class2 on the many-side. The relationship type, e.g. 1-1,
1-N or M-N, is stored in type. 

A relationship can be viewed from the perspective of class1 or class2. The
relationship is referred to from class1 by the name specified in name1to2.
name2to1 is used for referencing the relationships from class2.

A relationship also has implementation-descriptive attributes, such as
cascadeDelete2. This flag tell the code generators that if an instance on the
class1-side of the relationship is deleted, then all related instances on the
class2-side should be deleted.
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9.7.7 Attribute

A class owns a set of attributes via the relationship class_attributes. In the
meta-database it is possible to specify a defaultValue for an attribute and
define if the value is mandatory i.e. NULL-values are not allowed. The
keyNumber specifies the position of a key attribute within a composite key.
Non-key attributes have the keyNumber set to zero. 

The type of an attribute can hold an optional data type definition. If an
attribute is connected to a Property, it will receive its data type declaration
via the path Attribute.property->Property.domain->Domain.typeDef->
TypeDef.declarations(language)->Declaration.declaration, where language
is a parameter that selects a Declaration for the programming language.

9.7.8 AttributeGroup

When classes inherit a large number of attributes from a deep subclass
hierarchy, semantically related attributes for the same class get scattered if
they are ordered by inheritance level and name on forms and listings. The
meta-database object AttributeGroup enables a grouping according to
semantic relatedness. Each attribute group is assigned a groupId consisting
of a four character code. When selecting data from all inherited attributes
for a particular class from the meta-database using an SQL-query, the
results can be ordered by groupId and name. This is very useful for
providing review listings when product experts are asked to provide
comments on information content for various classes in the OODM.

9.7.9 Property

While developing several larger domain models within the same product
domain, one discovers that there are attributes which appear over and over
again. In the domain of turbine design, the attribute article_number is a
good example of this. In such cases, it is useful to store a common
definition for that standard attribute as a Property in the meta-database.
This allows several attributes to share the definition of, for instance, data
type or default value. If a company implements several PMS databases
from the same meta-database, they can easily combine data from the
different databases, by joining over standard attributes.

When several domain models have been developed, a property library
emerges. While developing new domain models, company standard
attribute names and definitions can be selected from the property library
and thus enforce reuse of definitions. This gives an opportunity to gain
control over diverging semantics for company information resources.
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9.7.10 TypeDef

All variable and attribute implementations are based on some data type. A
PMS may be implemented using several different programming languages
which need to share data and thus type definitions. A TypeDef stores a
standard type definition and has a set of Declarations for various
programming languages. A signed 32-bit integer is declared as a long in C
and C++, while the name of the same data type is int in Sybase’ SQL. When
generating code, especially for interface libraries between CAD-systems
and databases, this kind of data-type mapping information is necessary.

In our meta-database, we have a set of standard atomic data types defined
on the basis of the ones available in OMG's Interface Definition Language
(IDL) which is specified in [CORBA91].

9.7.11 Domain

A Domain defines a value domain. An example of a Domain is
week_number. A week_number can have the TypeDef “Integer”, and a
range of values between 1 and 53, i.e. minValue = 1 and maxValue = 53. A
PMS domain model may have classes for project planning. An Article class
may have a DesignActivity class that contains the attributes start_week and
an end_week. There may also be a ManufacturingActivity class for the
article’s manufacturing process, which has the same week attributes. 

Now it is possible to define the two properties start_week and end_week
which both belong to the Domain week_number. Through the relationship
property_attributes the attributes of the DesignActivity and Manufacturing
Activity are connected to their corresponding properties start_week and
end_week. 

Later during the domain model development, one may discover that the
planned design period for certain large scale articles may last for more than
a year. Hence the domain week_number also must include the number of
the Year. All affected attributes in the meta-database can be traced through
the relationships domain_properties and property_attributes.

By changing the definitions in the domain, the change can be automatically
propagated through the properties to attributes in all domain models. Using
the code generators, the PMSs can be re-implemented with the new data
type.

This section gave a short description of some of the classes and
relationships in the domain model of our meta-database. Many of the
classes which are not described here are used for storing abstract
intermediate implementation models which aid the code generation. Others
are used for modeling user roles and descriptions of their tasks. These are
presented in chapter 15, "An Information-oriented Task Description
Language".
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9.8 Experience from the ProCAD development
ProCAD is being developed iteratively using prototypes. Engineering
experts in power plant design participate in the continuous development of
the PMS domain model. When a new version of the model is confirmed, a
prototype is implemented which takes somewhere between a day and a
couple of weeks, depending on how much code that has to be written
manually.

Plant designers and other users work with the new prototype, get new ideas
and give their suggestions on what should be included in the next prototype
version. The suggestions are compiled, remitted and ordered according to
priority to become the input specification for the next version of the PMS
domain model.

In one version of the turbine power plant PMS, the object-oriented domain
model contained about 70 classes, 40 relationships and 380 attributes.
When the model was printed on paper in the form of object model diagrams
and reports, it produced about 170 A4 pages. The generated Sybase
implementation of the PMS database built 50 tables which contained about
1800 fields. 

The CAD-application for drawing process and instrumentation diagrams is
based on a commercial product and has been extended with special drawing
functionality by an AutoCAD application development company. This is a
recommended way of saving researchers from spending most of their time
doing painful, but necessary quality- and usability- improving
implementation work. Without a commercial status of the PMS, it is hard to
maintain the interest from busy product engineers.

A few of our leading product engineers develop their own report- and
search form applications in Microsoft Access with some support from the
computer department of ABB STAL. 

The software developed at Linköping University consists of more than 60
000 lines of code, of which more than 60% is generated automatically from
the meta-database. At ABB the system runs on a mixture of platforms,
including IBM RS 6000, Sun Sparc, Silicon Graphics and PCs. 
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9.9 Conclusions
There is a large potential benefit in using object-oriented product models
for engineering of high-tech mechanical artifacts. There are, however, three
major obstacles that prevent development of successful product modeling
systems (PMS). 

I) The design of the product models quickly becomes very complex.

II) The implementation of a PMS requires extensive software
engineering skills, and 

III) Computer technology is under continuous development and a PMS
implementation will become obsolete within a few years.

Our solution to overcome these problems is to use object-oriented CASE
models which enable a clean separation of the domains of product specific
engineering knowledge from software engineering implementation
knowledge. The models are stored in a meta-database from which source
code implementations can be generated automatically. 

Following this approach means that:

I) Product-specific engineering knowledge is documented as an
object-oriented CASE-model which is stored in a meta-database
according to standard format. Object-oriented CASE-tools
facilitate the development and maintenance of large object-
oriented domain models for PMSs.

II) Different software vendors can package their software engineering
knowledge for a particular software platform into source code
generators which transform standard format object-oriented
CASE-models into working implementations on their specific
software platforms. Typical targets for such implementations are
databases, user interfaces, and interface libraries between CAD-
systems and databases.

III) New generations of computer technology can be put into
production when source code generators for the new target
technology have been developed. In the future we see SQL3-
databases, a wide range of parametric CAD-software packages,
and 3D-user interfaces where object-oriented product models can
be developed in virtual 3D worlds.

The approach is being successfully used for the development of a power
plant PMS. We expect this system to become easy to port to new
generations of computer technology. These are exemplified by
[FahlRischSköld 93].
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FIGURE 21. An object model diagram for the meta-database. See 
section 9.7 on page 76 for a text description of the different 
domain model primitives. Section 9.5 on page 72 explains the 
graphical syntax.
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10 Source Code Generation 
from Domain Models

This chapter describes the principles behind declarative source code
generation from domain models that are stored in a meta-database.

The prerequisite for using this technique is that the meta-database has a
declarative query language with the expressive power of SQL. It must also
provide traditional programming language constructs such as loops and if-
then-else constructs.

Section 10.1 describes a small version of a meta-database, containing a
minimum set of information needed in a domain model for the generation
of basic object management functionality in a product model database.

Section 10.2-3 describe declarative 1- and 2-step source code generation.

Section 10.4 describes measurements on the size of the domain models, the
source code generators, and the generated source code. 

Finally the conclusions show that source code generation from domain
models enables a significant increase in productivity for software
implementation and maintenance.

10.1 Domain model for a mini meta-database
Figure 22 shows a mini version of the domain model for the meta-database
described in section 9.7 "The meta-database domain model" on page 76.
This subset is needed for implementing the source code generators that
generate the core object management functionality of a product model
database. The class Object is the root class. The leaf classes in the
inheritance hierarchy have tables in the meta-database. These are
DomainModel, Class, Relationship and Attribute. Their common attributes
(highId, lowId, definition, and name) are inherited from the class Object.

Classes in a stored domain model have a two character unique prefix, which
is used to prefix generated tables, stored procedures and triggers that are
related to the table. The naming convention we have chosen for generated
tables is the prefix plus an underscore followed by the name of the class in
lower case. i.e. the name of the table for company in Figure 26 on page 86
is co_company.

We use 64-bit object identifiers as keys, both for the meta-database and the
generated product model database. The identifier is divided into a 32 bit
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highId which is assigned uniquely for each database, and a 32 bit lowId that
is generated from a counter within the database. 

A table like the one in Figure 26 on page 86 is generated for all leaf
classes44 in the domain model inheritance hierarchy.

FIGURE 22. A subset of the domain model for the meta-database 

The source code generator is an SQL-select statement where values in the
prefix and name columns of the Class table in the meta-database are
selected and concatenated with literal strings that contain the template
source code.

10.2 Declarative 1-step source code generation
Source code generation is performed in a data-driven template-oriented
fashion. Figure 23 on page 85 shows a portion of a simple source code file
generated from a domain model. The example grants select permissions to
all tables to the user with the authorization ID chief_designer. The ‘go’
command sends the preceding SQL statements in the input file to the server
and waits until the batch is executed and the results returned, if any.

The source code in Figure 23 is generated from the source code generator
in Figure 24. The source code is generated as shown in Figure 25 from the
benchmark domain model (Appendix A page 182). Input to the meta-

44. Leaf classes have their gensqlflag set to true to provide a simple selection criteria for
queries (see Figure 24)
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database query program (ddq for data dictionary query) is a sequence of
SQL-batches like the one shown in Figure 24. Its SQL-statements select the
appropriate data from the meta-database and combines them with literal
source code strings. The database server compiles and executes the batch
and sends the resulting columns back to the ddq-program, which writes
each column on a separate line in a generated source code file.

grant select on ar_article to chief_designer
go
...
grant select on co_company to chief_designer
go
grant select on da_designactivity to chief_designer
go
grant select on de_department to chief_designer
go
grant select on dl_deliverable to chief_designer
go
grant select on dr_drawing to chief_designer
go
grant select on ia_includedarticle to chief_designer
go
grant select on pd_productdata to chief_designer
go
grant select on pr_product to chief_designer
go

FIGURE 23. Example of simple generated source code from the benchmark 
domain model presented in chapter 13.

select "grant select on "+
c.prefix+"_"+lower(c.name)+
" to chief_designer"
,"go"

from class c
where c.gensqlflag = ’T’ 
order by c.prefix
go

FIGURE 24. Source code generator for the code in Figure 23.

In the simplest case, the ddq-program takes an SQL-batch as standard
input, and prints the generated source code to standard output:

ddq <generate_grantselect.sql >grantselect.sql

The simple source code generator in Figure 24 consists of 8 lines and about
150 characters. The generated source code, which is only partly presented
in Figure 23 consists of 36 lines and about 850 characters, a generation
factor (generated source code size / source code generator size) of 4,5 for
the lines and 5,5 for the number of characters for the benchmark domain
model. This generation factor is linearly proportional to the number of
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classes in the domain model. Thus even if the source code will only be
written once, it can be beneficial to write a source code generator if the
number of classes are many.

FIGURE 25. Principle of declarative 1-step source code generation.

10.3 Declarative 2-step source code generation
Figure 26 shows the source code for one of 18 generated table declarations
from the benchmark domain model. The plain text is the literal source text
in the source code generator, and the bold faced text is data supplied from
the meta-database.

/* Table declaration for class Company */
create table co_company (
    created_by char(8),
    dtAdded datetime,
    dtModified datetime,
    highId int,
    lowId int,
    modified_by char(8),
    name varchar(40),
    ref_id char(8))

FIGURE 26. Source code generated by a 2-step source code generator.

This source code is generated in two steps.

ddq <generate_build_createtbl.syb >build_createtbl.syb

ddq <build_createtbl.syb

The first step generates an SQL-code generator which in turn generates the
final source code files. Figure 27 shows some more details of the 2-step
source code generation procedure.
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FIGURE 27. Principle of declarative 2-step source code generation.

Figure 28 shows the fraction of the generated source code generator from
the first step which in turn generates the code in Figure 26. The first step
instantiates data from the classes in the domain model, and the second step
instantiates data from the attributes for each class. allattribute is a view on
a table that caches all attributes for all classes in the inheritance hierarchy.

select ’/* Table declaration for class Company */’,’’
go
select ’create table co_company (’
go
select ’    ’+a.name+’ ’+a.declaration+’,’
from allattribute a
where a.class_highid = 1101
  and a.class_lowid  = 112011375
order by name
select char(8)+char(8)+’)’
go

FIGURE 28. Small portion of the generated SQL-code generator.

The select of char(8)+char(8)+’)’ backspaces two characters and overwrites
the comma behind the last attribute declaration with a ‘)’.
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Figure 29 shows a simple version of the 2-step source code generator for
the table declaration in Figure 26.

select "select ’/* Table declaration for class "+c.name+" */’,’’"
,"go"
,"select ’create table "+

c.prefix+"_"+lower(c.name)+" (’"
,"go"
,"select ’    ’+a.name+’ ’+a.declaration+’,’" 
,"from allattribute a"
,"where a.class_highid = "+convert(varchar,c.highid)
,"  and a.class_lowid  = "+convert(varchar,c.lowid)
,"order by name"
,"select char(8)+char(8)+’)’"
,"go"
 from class c
 where c.gensqlflag = ’T’ 
 order by c.prefix
go

FIGURE 29. Source code generator for the code in Figure 26.

The source code generator shown in Figure 29 consists of 17 lines and
about 440 characters. The generated source code consists of 312 lines and
6350 characters for the benchmark domain model, which means a
generation factor of 18 for the number of lines and 14 for the number of
characters.

10.4 Measurements from the development 
environment

The source code generation techniques described are an efficient way to
reuse software implementation knowledge. The larger the domain models
are, the larger the generation factors become. This has been verified by
measurements. Table 3 shows domain model measurements from the
benchmark application and one version of the ProCAD application
developed in cooperation with ABB STAL.

Five types of implementation functionality were generated using different
sets of source code generators. They are listed in the left column of Table 4.

The product model database (PMDB) stored procedures are used for

Table 3: Domain model measurements.

Domain model classes
leaf 

classes
relationships attributes

database 
columns

benchmark 27 18 16 45 292

ProCAD 52 40 46 429 1582
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accessing and updating the object structures in the database from the CAD-
system. The PMDB triggers are used for maintaining referential integrity in
the database. 

The CAD/DB interface procedures belong to the product model interface
layer in the CAD-system (Figure 16 on page 68). They are implemented in
AutoLISP which is an integrated application programming language within
AutoCAD. They provide the domain model-specific library of LISP-
functions for manipulating objects in the product model database. 

The CAD/UI interface belongs to the same layer, and implements a form-
based browser interface for objects in the PMDB, using AutoLISP and the
built in form layout declaration language of AutoCAD.

The bottom two rows show measurements from test implementations done
in Smalltalk.

Table 5 shows measurements on the generated source code. The figures in
parentheses are from ProCAD. Observe that these generated
implementations only provide the basic object management functionality.
Application-specific functionality is written manually using calls to these
generated high-level domain specific software layers, and requires skills in
both the domain and the CAD-system.

Table 6 relates measurements on the generated source code to the size of
the source code generators. The PMDB implementation generated for the
benchmark domain model consists of about 2-3 times as much source code
as the source code generators themselves. For a domain model of the size of
ProCAD, this factor is more than 10.

Table 4: Source code generator measurements.

Number of 
source code 
generator 

scripts

Number of 
procedure
generators

Number 
of lines

Number of 
characters

PMDB stored 
procedures

27 43 1563 57492

PMDB triggers 4 4 201 6629

CAD/DB interface 19 22 582 17012

CAD/UI interface 20 21 691 21933

Smalltalk PMDB 39 3089 91969

Smalltalk UI 7 420 13900
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Table 5: Generated source code measurements. Benchmark (ProCAD).

Number of 
generated 

source code
files

Number of 
generated 

procedures

Number 
of lines of 

code

Number of 
characters 

of code

PMDB stored 
procedures

41
(85)

180
(560)

5538 
(26126)

132428 
(687511)

PMDB triggers 18 
(40)

54 
(120)

1052 
(2612)

29587 
(78692)

CAD/DB interface 38
(82)

240
(738)

4452
(11153)

44342
497588

CAD/UI interface 37
(84)

158
(406)

2537
(15598)

79218
625816

Smalltalk PMDB 90
(104)

19170
(53882)

561523
(1941603)

Smalltalk UI 18
(40)

5353
(23144)

150588
(757606)

Table 6: Generated source code size / source code generator size.

Factor of 
generated 

source code
files

Factor of 
generated 

procedures

Factor of 
lines of 

code

Factor of 
characters 

of code

PMDB stored 
procedures

1,5 
(3,1)

4
(12)

3,5
(16)

2,3
(12)

PMDB triggers 4,5 
(10)

13,5 
(30)

5,2 
(13)

4,5
(12)

CAD/DB interface 2,0
(4,3)

11
(34)

7,6
(19)

2,6
(30)

CAD/UI interface 1,8
(4,2)

7,9
(19)

3,7
(23)

3,6
(29)

Smalltalk PMDB 2,3
(2,7)

6,2
(17)

6,1
(30)

Smalltalk UI 2,6
(5,8)

14
(62)

11
(54)



91

The Smalltalk PMDB implementation was made to demonstrate that
implementations for the domain models can be generated in a traditional
object-oriented programming language. The generated Smalltalk User
Interface is a straightforward browser application, with one form for each
leaf class with attribute and relationship editors for each attribute and
relationship that belongs to the class. Here, too, most of the functionality
was factored out and placed in the GUI-DBI layer (Figure 17 on page 69).
The generation factor for forms is proportional to |C|*|A|, where |C| is the
number of classes in the domain model, and |A| the number of attributes.
The functions in the CAD/DB interface does a simple forwarding of the
calls to the stored procedures in the product model database. Other
interface functionality was factored out into general procedures placed in
the CAD-DBI software layer (Figure 16 on page 68).

10.5 Summary and conclusions
Source code generators that take data from one meta-database table can be
written in one step. Source code generators that need to combine data from
two meta-database tables, for instance the class and attribute tables, can be
implemented in two steps. 

In a two-step source code generation, the first step generates a source code
generator with instantiated data from the first table. The second step
instantiates data from the second table and produces the final source code.

The size of the generated source code divided by the size of the source code
generators is called the generation factor. To implement the basic object
management functionality of a product model database, a CAD/DB and
CAD/UI interface, source code generators for about 90 types of procedures
were written. They consisted of about 3000 lines of source code.

For the benchmark domain model with 27 classes, 16 relationships and 45
attributes, the generation factor is about 2-3. For a domain model with 52
classes, 46 relationships and 429 attributes the generation factor is larger
than 10.

Thus using formal domain models, a meta-database, and the source code
generation techniques described in this chapter can lead to increases in
productivity of an order of a magnitude for the implementation phase. 

Testing whether a source code generator produces correct code can be done
by generating an implementation from one design space spanning
benchmark domain model, and testing this implementation thoroughly.

Software maintenance is made significantly easier. If an error is detected or
an improvement must be made in the generated source code, the code
generator is rewritten and the old source code replaced by new, regenerated
code. The generation factor for a domain model can be larger than 60 for
certain types of source code.

If several applications use the same source code generator, the cost of the
testing effort can be shared amongst these applications.
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Part III Theoretical 
Framework for the 
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11 Introduction to Part III

Model based KBS for the design of complex artifacts need to be based on
an information system that takes care of the basic information management
issues of the models on which the KBS operates. The same aspects that
apply to the development of complex information systems need to be
addressed. These include proper design, implementation, test, validation
and continuous maintenance by a staff that will change many times during
the lifetime of the KBS.

Maintenance issues are more complex for KBS than for traditional
information systems. Thus if the basic problems with information systems
maintenance are not solved in a satisfactory manner, maintenance of a large
scale KBS will soon become unmanageable.

One way to handle the maintenance problem is to restrict the utilization of
the design space of the underlying information system platforms such that a
the object system management of a KBS implementation can be generated
automatically from a domain model which is maintained in a meta-
database.

As described in Part II, the underlying information system platforms will
change as software industry provides new better solutions.

The KBS-user companies will need software industry to provide new
source code generators for the new platforms in the same way as
standardized programming languages need new machine code generators
for new processors.

There must be a way to validate new source code generators such that the
customer companies are guaranteed that their KBS will be correctly
implemented on the new platform. The validation procedure must also
provide measurable evidence that the KBS-application running at the user
company will benefit in terms of performance from the shift to the new
technology.

Making the source code generators pass the validation procedure is also a
well defined goal for software engineering companies developing source
code generators for new platforms.

The following chapters will introduce some fundamental concepts in
information system design that constitute the core of a theory that enables a
qualitative and quantitative validation procedure of source code generators
for database and user interface application generators.
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12 Concepts and Notation from 
Infological Theory

Infological theory has its roots in Börje Langefors’ work [Langefors 66]
[Langefors 93]. A major contribution to the understanding of the nature of
information and data in the context of communication with humans is
concisely expressed in his infological equation:

(EQ 1) I = i(D,S,t)

where I is the information (or knowledge) produced from the data D and the
pre-knowledge S of a person, by the interpretation process i during the time
t. In the general case, S in the equation is the result of the total life
experience of the individual.

This chapter presents a conceptual framework for the information system
part of KBS and PMS applications.

The other well-known definition of information relates to the context of
information transmission over a channel with a limited bandwidth.
Section 12.6 provides definitions of the unit “bit” from information
(transmission) theory to clarify the difference between the semantically
oriented information unit “e-constellation”, used here.

12.1 A quantifiable infological framework
The infological frame-work presented briefly here was developed by Bo
Sundgren [Sundgren 73]. His framework differs from other object system
modelling languages in the respect that it allows explicit numerical
quantification of the amount of information stored in a certain object
system model. This is achieved by defining the term elementary
constellation as the smallest possible entity of information. The term
elementary message is used for denoting a message that can transfer one
elementary constellation from a sender to a recipient. These features
provide the necessary theoretical basis that enable numerical comparison of
the information quantity in different object models measured in their
number of e-constellations. It also enables comparison and evaluation of
particular user interface designs45, in terms of the hypothetical measures of

45. The user interface is intended for visualization and interaction with the contents of a
particular knowledge- or data-base where the “schema” (or domain-model) of the
knowledge- or data-base can be described in terms of an infological model.



98 Development Environments for Complex Product Models. V2

accessibility and operability as defined in chapter 15, "An Information-
oriented Task Description Language".

The central concepts in the infological framework are presented in
Sundgren’s thesis. The purpose of this chapter is to give a reader,
unfamiliar with infological theory, an understanding of the important
concepts.

12.2 Data and information
The terms data and information are central axioms for infological theory,
and it is therefore in place to introduce them:

Definition : If a person intentionally arranges one piece of reality to represent 

another, we shall call the former arrangement data, and we shall 

say that the arranged piece of reality is a medium, which is used 

for storing the data.

The concept of information is more difficult to define in one single
sentence. It is easier to describe some of its important properties.
Information exists only in the mind of a human being as a part of that
person’s mental frame of reference. By a frame of reference, we mean the
collection of concepts, definitions, laws of logic, empirical laws and
perceived, deduced or deducible knowledge belonging to the mind of that
reference person P at a particular time. A person’s frame of reference will
change continuously, depending on what new knowledge he/she acquires,
and what is currently in focus in his/her conscious mind.

FIGURE 30. Transformation of data into information. From [Sundgren 73] 
page 24.
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Figure 30 shows a model of processes and representations needed for
transforming a data message into information that can be assimilated into
the body of knowledge of a particular person P’s mind. The concept
definitions are P’s understanding of the referents in a particular data
message. The interpretation rules define how lexical and syntactical
structures in the data message are mapped to the semantics. The result of
the interpretation is a conceptual message that carries the semantics of the
data message. If the conceptual message was not known before by P, it will
be information, which may lead to an update of his/her former knowledge
structures46.

12.3 Infological model
A model is an abstraction, a simplifying representation, of some aspects of
reality. It is created in order to facilitate analysis, planning, and decision-
making within a particular domain. A model ought to be the result of a
homomorphic mapping of one subset of reality to another. An infological
model is a formal description of a certain target domain47. It is defined with
a set of generators. Each generator consists of a fundamental basis in terms
of objects, properties, object relations etc. and a set of generation rules that
together form a formal definition of the domain of a large closed world.
The infological model is the result of analysis of the target domain.
Figure 31 on page 100 shows the relations between a domain of reality,
infological theory and a particular infological model in the process of
developing a data-base (or KBS) application.

There are many similarities between formulating an infological model and
knowledge acquisition (Figure 2 on page 31 and Figure 31 on page 100).
Reality corresponds to the target domain for the particular application. The
conceptual model was described in section 5.1.3 on page 33. The
infological model is a formalized model of a conceptual model expressed
using infological theory. A domain model or meta-model48 is used for the
same purpose as an infological model, but may be expressed in languages
with a less well-founded theoretical basis, and may in some cases describe
additional modelling aspects, for instance dynamic behavior. The database
implementation model contains implementation-specific details and user
interface specifications. This model is to represent the concepts available in
the data definition language (DDL) of a target database or file system. In
many cases the database implementation model is stored in the database
itself.

46. Data messages are useful during human information processing even if they do not
carry new information for a particular person P. The effect of receiving a data message will
be to recall its contents to the conscious mind. In other terms it is a reactivation of the
appropriate knowledge structures (chunks) previously stored in long term memory (LTM)
in working memory (WM). (See Appendix E page 218 for further details.)
47. Infological theory was developed for facilitating the design and implementation of
data-bases. A superset of traditional data analysis should to be made for the design of KBS.
48. Recall section 5.1.4 on page 33.
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Once the infological model is specified, pieces of reality can be represented
as data messages according to some chosen representation. These are
transferred to the database during the implementation and operation of the
database.

FIGURE 31. The homomorphic mapping of a slice of reality into a data-base 
model. From [Sundgren 73] p 32.

The rest of this chapter will focus on the infological frame-work for
specifying an infological model.

12.4 Infological object system concepts
In infological theory, we try to model the real world without regard to
database implementations. The reader is encouraged to forget about the
common computer science concepts of object systems for a moment,
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despite their obvious similarities with the terminology used here.

In the infological theory, there is a distinction between fundamental
concepts, which are informally defined, and derived concepts, which are
defined in terms of fundamental concepts. The theoretical frame-work can
be divided into two areas, the object system part and the information
sphere. Within the object system part there are four basic fundamental
concepts: object o, property p, object relation r and time t. These define the
derived concept elementary constellation, (or e-constellation) that can be
either of property type <o,p,t> or relational type <<o1, ... , on>, r, t>, where
r is a relation of order n and <o1, ... , on> is a n-tuple of objects. Most
object relations are binary. Orders above three are very rare, since complex
relations can usually be broken down into more primitive ones.

12.4.1 Object

An object o can be either atomic or compound. Atomic objects are
fundamental, i.e formally unspecified. Compound objects are formally
defined in terms of other entities49. Important events in the life-cycle of an
object are its creation, changes and destruction. There is a problem with
identifying objects. How can we tell one from another, if they have exactly
the same properties? Objects are identified with respect to their properties.
Artificial objects are usually given an object identifier (oid) or identifying
property, such as a name, a registration number etc. The identifying
property usually belongs to the object until it is destroyed.

12.4.2 Property

A property p distinguishes something interesting about a particular object
o. P is the set of properties for one particular infological model. Properties
are generative under a closure restriction:

If p1,...,pn are elements in the set of properties, P, of a particular 
infological model, and g is an element in the set of property 
generation rules, G, for the same model, and g(p1,...,pn)=pn+1, then 
pn+1 ∈ P. 

A P-generator is any subset of P which together with the property
generation rules, generates P. A P-basis is a minimal P-generator. 

12.4.3 Object-relation and object group

The set R is the set of object-relations for one particular infological model.
Similarly, as for properties, object relations are generative under a closure
restriction. There is an R-generator, and an R-basis.

49. The terms “entity” is used as a general term for more specific object system entities
such as object, property, e-constellation etc.
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An object group O(p) is generated by all objects o that have a certain
property p. Object types, having a stable set of properties constitute a
classification.

12.4.4 Attribute

A set of properties is defined to be an attribute A, if there is an object group
O(p) for which A is relevant, according to a set of more precise definitions
not presented here. Intuitively, an attribute is what we usually expect it to
be. The elements vi are called the values of A.

An identifying attribute A is a single valued attribute that distinguishes
objects from each other. A generally identifying attribute A uniquely
identifies single objects o within all object groups O(p).

12.4.5 Attribute and relational e-constellation types

Definition : If x is an n-tuple <O1(p),...,On(p)> of object groups Oi(p), and y 

is an attribute or an object relation, then the pair <x,y> is called an 

elementary constellation type. x is called the object component 

and y the predicate component of the e-constellation type.

There are two special cases of elementary constellation types. If O is an
object group, and A is an attribute then the pair <O,A> is called an attribute
e-constellation type (aect). If <O1,...,On>, is an n-tuple of object groups,
and R is an n-ary object relation, then the pair <<O1,...,On>,R> is called a
relational e-constellation type (rect).

Definition : If <x,y> is a valid e-constellation type, and t is a time, and there is 

a valid e-constellation <xi,yj,t> corresponding to <x,y>, then 

<x,y,t> is said to be a valid time version of the e-constellation type 

<x,y>.

A valid e-constellation type has a formal definition that in its essence tells
it to be the type of some e-constellations that have valid self-contained
meanings in a particular domain. e-constellation types constitute a basis for
the design of the database implementation model, where the number of time
versions50 of each type is an important design parameter.

12.5 Information entities
Information entities are the components of a message which must be
provided to in order to successfully transfer information to a user.

50. Could also be described as the number of instances of each type, using computer
science terminology.
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12.5.1 Reference

The basic, formally undefined concept within the information sphere of the
infological frame-work is reference ρ. A reference points to a target which
can be any instance of a fundamental or derived object system concept.

A reference may be either explicit or implicit. An explicit reference refers
directly to its target. An implicit reference is given as a reference
expression expr(ρ1,...,ρn) that is isomorphic with g(e1,...,en), where g is a
generation rule that tells how to generate the target entity given the object
system entities51 e1,...,en.

Among explicit references we distinguish between:

universal names, which refer to a unique object system entity,
independently of the infological context, i.e. the
environment where the reference occurs.

local names, which are unique in a particular infological context.

quasi-names, which are non-unique references, tentatively used
where the infological context requires a unique
name. Further interaction may resolve the target or
possible targets of the quasi-name.

ambiguous references which form the complement of the other classes.

References ρ can be classified according to the type of their target. If it is
inferable that the target of ρ belongs to category x, where x is an object
system entity (e.g. an object, property, e-constellation etc.), we say that ρ is
an x-reference. If for ρ there is any valid infological context making ρ an x-
reference, then ρ is a potential x-reference. 

12.5.2 Message

A message is used to transfer information. Messages can be broken down
into elementary messages which transfer one elementary piece of
information, e.g. an e-constellation. The definition of a complete
elementary message is:

Definition : If <x,y,z> is a reference expression, where x is a n-tuple of locally 

unique object identifiers, y refers locally uniquely to a generating 

property52 or generating object relation, and z is a locally unique 

time reference, then <x,y,z> is called a complete elementary 

message, a complete e-message. x is called the object component, 

y the predicate component and z the time component of the e-

message.

51. The terms “object system entity” and “information entity” are used as general terms for
the more specific ones defined in the object system part and information sphere.
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12.5.3 Message types / elementary concepts

Messages can be ordered under message types.

Definition : If x is an n-tuple of object group references, and y is an attribute 

reference or an object relation reference, then the pair <x,y> is 

called an elementary message type (e-message type) or an 

elementary concept (e-concept). x is called the object component 

and y the predicate component of the e-message type.

There are two special cases of e-concepts. If ρ(O) is an object group
reference, and ρ(A) is an attribute reference then the pair <ρ(O),ρ(A)> is
called an attribute e-message type (aemt). If <ρ(O1),...,ρ(On)>, is an n-
tuple of object groups, and ρ(R) is a reference to an n-ary object relation,
then the pair <<ρ(O1),...,ρ(On)>,ρ(R)> is called a relational e-message type
(remt).

An e-concept (e-message type) <x,y> is defined as meaningful if and only
if <x,y> refers to a valid e-constellation type. When we design and use
data-bases we need to talk about instances of the same e-concept. Sundgren
defines one important variant53 of instances as different time versions of an
e-concept. A meaningful time version of an e-concept is defined in the
following way:

Definition : If <x,y> is a meaningful e-concept, and t refers to a time, and there 

is a specific meaningful e-message <xi,yi,t> corresponding to 

<x,y> then <x,y,t> is said to be a meaningful time version of the 

e-concept <x,y>.

For static systems, the time component in e-constellations may be omitted. 

When developing product models, it would induce a significant overhead
and complexity if the time component had to be specified for each e-
constellation.

Appendix G presents a detailed example that shows how the concepts in
this chapter can be applied to a simple product model of a car braking
system. For the e-constellations presented in Figure 53 on page 230, the
time component is omitted.

52. A generating property is a property which is a member of the explicitly specified
property generator of the particular infological model. Similarly a generating object
relation is an object relation which is a member of the object relation generator. Recall that
the infological model is specified in terms of generators which are formed from two parts:
a basis of object system entities and sets of formal generation rules. A rule in a property
generator can, for instance, define that if <o,person,t> and (<o,<weight,X>,t>) and (X > 90)
then <o,heavy,t>. 
53. There are other variants of instances of e-concepts. For instance <o1,<A>>, where o1
is a specific object.
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12.6 Transmission oriented information theory
Information theory is a very important engineering discipline for
applications in digital communications [Haykin 88]. The definitions in this
section are included to provide an understanding of the information
transmission theoretic measure of information - the binary unit “bit”.

In 1948, Claude Shannon published a landmark paper entitled “A
Mathematical Theory of Communication.” [Shannon 48]. The paper
provided the foundation of a scientific core for mathematical modeling and
analysis of communication systems, widely known as “Information
Theory”. Given an information source and a noisy channel, information
theory provides limits on (1) the minimum number of bits per symbol
required to fully represent the source, and (2) the maximum rate at which
reliable communication can take place over the channel.

Shannon separated his models of communication from the semantic
aspects, which is apparent in the following quote:

“The fundamental problem of communication is that of 
reproducing at one point either exactly or approximately a 
message selected at another point. Frequently the messages 
have meaning; that is they refer to or are correlated according 
to some system with certain physical or conceptual entities. 

These semantic aspects of communication are irrelevant to the 
engineering problem. The significant aspect is that the actual 
message is one selected from a set of possible messages. 

The system must be designed to operate for each possible 
selection, not just the one which will actually be chosen, since 
this is unknown at the time of design.”

Suppose we have a discrete source emitting symbols every unit of time
(signaling interval). The source output is modelled as a discrete random
variable S, which takes on symbols from a fixed finite alphabet 

(EQ 2)

with probabilities

(EQ 3) P( S = sk ) = pk , k = 0, 1, ... , K-1

The set of probabilities must (of course) satisfy the condition

(EQ 4)

We define the amount of information gained after observing the event
S = sk , which occurs with probability pk, as the logarithmic function

A s0 s1 … sK 1–, , ,{ }=

pk

k 0=

K 1–

∑ 1=
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(EQ 5)

The unit of information is called the bit54 (from binary unit). When we
have pk = 1/2, we have I(sk) = 1 bit. Hence, one bit is the amount of
information that we gain when one of two possible and equally likely
events occurs.

(EQ 5) exhibits the following important properties:

(EQ 6) I(sk) = 0 for pk = 1

obviously, if we are absolutely certain of the outcome of an event, even
before it occurs, there is no information gained.

(EQ 7)  for 

The occurrence of an event S = sk either provides some or no information,
but never brings about a loss of information.

(EQ 8)  for 

That is, the less probable an event is, the more information we gain when it
occurs.

(EQ 9)  if sk and si are statistically independent.

The information of two symbols in sequence is the sum of the information
of each symbol.

Given (EQ 3) and (EQ 5), the mean value of I(sk ) over the source alphabet
A is 

(EQ 10)

H is the entropy of a discrete memory-less source with alphabet A, and it is
a measure of the average information content per source symbol.

54. Note that the term “bit” (of course) also is used to denote a binary digit in a sequence
of 1s and 0s.

I sk( ) log2
1
pk
----- 
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13 A Design Space Spanning 
Benchmark Domain Model

This chapter presents a benchmark domain model that has been designed to
cover the design space of the primitives used for developing large scale
product modeling systems. It is placed before chapter 14, "Primitives for
Domain Models" to give an example to instantiate the primitives on.

The benchmark domain model covers the domain of an engineering
company that designs products that can be represented by hierarchical
article structures (part-of relationship) with references to included articles
(uses relationship). It has a single inheritance hierarchy (isa-relationship),
and includes a one to many relationship to a superclass where the instances
can be of different subclasses. This type of relationship is common in
product models, for instance when a part-of relationship can own
components of slightly different types.

The benchmark domain model also covers hierarchical network activity
planning. The nodes of the planning graph represent activities and the
edges represent deliverables that are output from one activity and input to
another.

The article structure and network planning graphs are very common in
product models. Large and complex instances of graphs for benchmarking
purposes can be efficiently documented as a recursive algorithm using a
random number generator with a known seed and thus number sequence.

13.1 Object model diagram of the benchmark 
domain model

Figure 32 on page 108 shows an object model diagram of the benchmark
domain model. The example presented in Section 9.5 on page 72 explains
the syntax of the diagram and the entity DatabaseObject.

DesignationObject inherits from database object. Its attribute ref_id serves
as a human readable identifying attribute and name provides a descriptive
name for the object. The subclass QualitySecuredObject manages quality
assurance information in the attributes checked_by, approved_by, release
and status.
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FIGURE 32. The benchmark domain model.

The hierarchical 1-N relationship owner_owns, the M-N relationship
between Articles connected through IncludedArticle, together with the
orthogonal hierarchical DesignActivity scheduling network, allow the
creation of large and complex interactive browsing paths. 
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Benchmarks on long series of such browsing paths will be able to
distinguish access times in different interface configurations with statistical
significance. See Appendix F on page 223 for a browsing path example.

Object system entities in the benchmark domain model can be expressed in
infological terminology. For instance <Product, delivery_date> is an
attribute e-constellation type (aect). 

<<Company,Department>, company_departments> is a relational e-
constellation type (rect).

13.2 Overview of the benchmark domain model
This section presents some of the details of the benchmark domain model
that provide examples for the concepts described in more detail in the
following chapters.

An instance of the benchmark domain model typically contains one
Company that has several Departments through the 1-N relationship
company_departments. Each Department has many products, and each
Product may hold a set of ProductData instances through the 1-N
relationship product_productData.

The class ProductData shown in Figure 32 contains attributes of the basic
data types of the CORBA55 interface definition language (IDL) [CORBA
91]. A user interface compiler must generate attribute editors for each of
these data types. The ProductData class is useful for statistical
measurements of attribute value manipulation times for different
implementations of attribute editors.

Each product may have one main Article through the 1-1 relationship
product_mainArticle. Articles may own other articles through the 1-N
relationship owner_owns. They may also include other article definitions in
the assembly through IncludedArticle objects which implement an M-N
relationship between articles. The attribute quantity specifies the number of
included articles in the assembly. 

The Company holds all its Drawings through the 1-N relationship
company_drawings. Figure 33 shows an example of a form-based object
editor for instances of the class Company. The editor provides access to the
attribute values of all inherited attributes from DatabaseObject.highId
down to DesignationObject.name. Instances of the 1-N relationships
company_departments and company_drawings can be edited through the
listbox implementation of relationship set editors identified with the labels
Departments and Drawings.

The path Company.departments->Department.products->Product.mainArticle-
>Article represents a typical hierarchical browsing path over 1-N
relationships that needs to be efficiently implemented by a user interface

55. Common Object Request Broker Architecture
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compiler. Figure 34 shows an example of a hierarchical browser for this
path. Users can easily click their way down the hierarchy, and read and edit
the values of the attributes ref_id and name for instances of Company,
Department, Product and the products corresponding mainArticle directly.
The classes Product and Article have the attributes delivery_date and
quantity. These have their own labelled attribute editors in the browser.

FIGURE 33. Example of an object editor window for instances of the class 
Company within the benchmark domain model.

FIGURE 34. Example of a form-based browser window for the path 
Company down to Article in the benchmark domain model.

Figure 35 shows an example of a form-based hierarchy browser for an
Article and its hierarchical article structure implemented through the 1-N
relationship owner_owns. By selecting an article in the relationship set
editor labelled by Articles, the browser sets the object editor to the right to
display this article. Through the relationship set editor labelled “Includes”,
the user has access to instances of IncludedArticle related to the current
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article through the 1-N relationship article_includes.

FIGURE 35. Example of a form-based browser window for the hierarchical 
structure Article->owner_owns.

Figure 36 shows a graphical 2D view of the same article structure as
displayed in the Articles relationship editors in Figure 35. The different
article instances are accessible through the rectangular object editors in the
nodes of the graph. The editors are click sensitive and provide popup
menus with available operators. The attribute values for ref_id, name and
quantity can be accessed through attribute editors that cover the top left,
top right and bottom right corner of an object editor. For interpreting the
information in this 2D view correctly, the user has to have learned the
interpretation rules that the location of the attribute values determines the
attribute constellation type to which the displayed value belongs.

FIGURE 36. Example of a 2D browser for hierarchical 1-N relationships.
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In the benchmark domain model each product can have a main
DesignActivity connected through the 1-1 relationship
product_mainActivity.

There is one special 1-N relationship product_features, which has the
special feature that instances on the N-side may be any of the subclasses for
the class C. When creating a new instance on the N-side of this kind of
relationship, the user must provide information about which subclass to
instantiate. A user interface compiler providing support for implementing
this feature must be able to detect this case.

Appendix A has tables with additional details of the benchmark domain
model.

The next chapter describes a theory for calculating information quantity in
complex object structures. The theory enables interactive calculations of
the type presented in Figure 37.

FIGURE 37. Interactive calculation of the information quantity owned by an 
Article object. In this view 40 e-messages are visible that 
represent e-constellations owned by “a3 Article a3”.
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14 Primitives for Domain Models

This chapter describes fundamental primitives for the design of domain
models and how these primitives relate to infological theory. The
primitives are a subset of the ones described in section 9.7 "The meta-
database domain model" on page 76. They are selected to minimize
complexity and be straightforward to implement in relational- and object-
oriented databases using declarative source code generators.

FIGURE 38. View of the meta-database domain model, showing domain 
model meta-data used for performance calculations.

Figure 38 shows a subset of the domain model meta-data in the meta-
database that is used for information quantity calculations and prediction of
database- and user interface performance requirements. In this chapter, the
concepts Class, Attribute, Relationship of types 1-1, 1-N & M-N will be
described in more detail and related to infological theory.

Primitive operations on classes, attributes and binary relationships are also



114 Development Environments for Complex Product Models. V2

defined. Besides the function, each operation has a description of how it
influences the information content of an instantiated domain model
calculated in its quantity of e-constellations. The primitive operations are
atomic. That is, the implementation must make sure that they are either
performed completely or not at all.

One of many benefits of the exact quantification measures of instantiated
domain models is that it makes it possible to compare the size and
complexity of different product models and domain models from different
engineering domains. This comparison mechanism can, for instance,
support project planning and cost estimation for developing PMSs and
KBSs for new domains.

14.1 Class
A class specifies a classification of object types within the domain that are
important enough to have their own name, definition and possibility to be
accessed as one unit. Our meta-database definition of the domain model
concept Class was given in section 9.7.5 on page 77. Table 7 describes
class attributes that should be defined in the domain model. Table 8
specifies class operations that must be available in the delivery system, and
Table 9 operations that must be available on instances of a class.

Table 7: Class attributes.

Name Description

name A descriptive name of the class.

definition A definition of the class in one or a few sentences.

prefix A short string prefix that uniquely identifies the class within 
the domain model.

avgCardinality Estimated average number of instances of this class.

stdCardinality Standard deviation of cardinality.

Table 8: Class operations.

operation name Description

C.new(oc) Create an new instance of a class, maintaining all 
referential integrity- and cardinality constraints of the 
domain model. oc is an ordered collection with objects 
needed to fulfill the cardinality constraints imposed by 
relationships for instances of class C.

C.instanceAt(oid) Return the instance with the given object-identifier oid.
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14.1.1 C.new(oc)

Create an new instance of a class, maintaining all referential integrity- and
cardinality constraints of the domain model. oc is an ordered collection
with references to objects which must exist in a relationship to instances of
C in order to fulfill the cardinality constraints of C’s relationships. If the
cardinality constraints do not require instances of C to be owned or
referenced by other objects, oc is an empty collection.

Information quantity change: The added number of e-constellations are
calculated as the aggregate of all defined default attribute values for the
class plus the information quantity in the relationships to the supplied
objects in oc. If C has owned objects through a part-of relationship which
must have at least one object to fulfill the cardinality constraints, these
objects are created automatically and their information quantity added.

(EQ 15) shows how to calculate the added information quantity for the new
instance.

C.allAttributes() Return the set of all attributes that belong to the class, 
including inherited attributes.

C.allRelationships1() Return a set of all relationships for which the class is on 
side 1.

C.allRelationships2() Return a set of all relationships for which the class is on 
side 2.

Table 9: Class instance operations.

operation name Description

o.localIq() Return the local information quantity for the object. See 
section 14.1.5 on page 116.

o.iq() Return the information quantity owned by the object including 
its part-of relationships. See section 14.1.6 on page 116

o.canDelete() Return true if the object can be deleted without violating any 
cardinality constraints defined in the relationships.

o.delete() Delete the object and all objects in its owned part-of 
relationships, while maintaining referential integrity. See 
section 14.1.7 on page 117

Table 8: Class operations.

operation name Description
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14.1.2 C.allAttributes()

Return the set of all attributes that belong to the class.

(EQ 11)

where ancestors(C) returns a union of the owner superclass and mix-in
super classes that are inherited through the priority ordered M-N
relationship implemented by AncestorSubClass in Figure 38 on page 113.

14.1.3 C.allRelationships1()

Return the set of all relationships for which C is class1.

(EQ 12)
 

14.1.4 C.allRelationships2()

Return the set of all relationships for which C is class2.

(EQ 13)

 

14.1.5 o.localIq()

The local information quantity localIq() for an object o of class C is
calculated as the sum of the information quantities held by all attributes
(inherited and local) plus all relationship references.

(EQ 14)

where o.iq<a>() returns the information quantity of the attribute value.
(Section 14.2). The information quantity returned by o.iq<r21> is given in
(EQ 22), (EQ 23) on page 122 and (EQ 33) on page 125.

14.1.6 o.iq()

The information quantity (iq) is calculated as the local information quantity
localIq() (EQ 14) for an object plus the information quantity contained in
the part-of structures in owned relationships. Relationships can by
definition only be owned in the 1to2 direction. See Section 14.3 on
page 119.

(EQ 15)

C.allAttributes() AC.allAttributes()

AC∀ ancestors C( )∈
∪ 

 
 

C.attributes()∪=

C.allRelationships1() ac1.allRelationships1()

ac1∀ ancestors C( )∈
∪ 

 
 

c.relationships1()∪=

C.allRelationships2() ac2.allRelationships2()

ac2∀ ancestors C( )∈
∪ 

 
 

c.relationships2()∪=

o.localIq() o.iq<a>()

a∀ class(o).allAttributes()∈
∑ o.iq<r21>()

r21∀ class(o).allRelationships2()∈
∑+=

o.iq() o.localIq() o.ownedIq()+=
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(EQ 16)

14.1.7 o.delete()

Delete an instance of the class and all objects in its owned (part-of)
relationships, forcing the maintenance of all referential integrity- and
cardinality constraints of the domain model. Warnings to the user has to be
issued before this operation is performed, for instance by checking with the
testing operation canDelete.

A delete operation can never leave the product model in an illegal state. A
bad design of cardinality constraints on the relationships may lead to a
rippling deletion of a whole product model. The information quantity
change is -o.iq() before the delete operation is performed, if no cardinality
constraints enforce deletions of associated objects. These restrictions also
apply to the delete operations on relationships specified later in this
chapter.

14.2 Attributes
An attribute defined in the domain model documents an attribute e-
constellation type that belongs to objects of a particular class.

Sometimes during the development of a domain model we would like to
document some concepts as attributes that do not map directly to an
attribute e-constellation type. An example of such an attribute is a long text
field containing a textual definition, comment or remark. To handle such
unformal attributes in our theoretical framework, it is possible to specify a
default information quantity that should be added to the information
quantity of the object if the attribute has a value; see Table 12

If there is a need to extract the information quantity of a textual sentence,
the knowledge engineer has to write a parser that translates the text into a
parse tree, where the nodes are instances of classes in the domain model
and the information quantity can be calculated according to the framework
from the root of the parse tree.

Table 10 specifies the attributes of an Attribute specified in the domain
model. Table 12 specifies the operations that should be available for each
attribute on objects of a particular Class.

Table 10: Attribute attributes.

Name Description

name A descriptive name for the attribute.

definition A definition of the attribute in one or a few sentences.

o.ownedIq() o.iq<r12>()

r12∀ class(o).allRelationships1()∈
∑=
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type The data type of the attribute, if it is not inherited from the 
TypeDef, or Property. See Figure 21 on page 82.

defaultValue A default value, if it is not inherited from the TypeDef, or 
Property.

defaultIq Default information quantity for an attribute value. Usually 1.

probabilityClear Probability that this attribute has been cleared or never got a 
value set by the user.

avgSize Estimated average size in a convenient measure. Usually the 
number of characters in a character representation of the 
value. The average size can be used for calculating the 
estimated average time for a user to enter a value.

stdSize Standard deviation of size.

Table 11: Attribute operations on class C.

operation name Description

C.default<attname>() Return a default value for the attribute.

C.defaultIq<attname>() Return the default information quantity for an 
attribute that has a value. Is 1 in most cases.

Table 12: Attribute operations on objects of class C.

operation name Description

o.get<attname>() Return the current value of the attribute. If the value was 
never set and no default value has been defined, raise an 
exception where the user has the option to select or set a 
value. If the exception functionality is not implemented, 
the source code generator should report an error.

o.iq<attname>() Return the information quantity of the attribute. If the 
attribute has a value, the default implementation should 
return the defaultIq specified in the domain model, else it 
should return 0.

o.has<attname>() Return true if the current attribute value carries 
information, i.e. iq<attname>() would return a non zero 
value.

Table 10: Attribute attributes.

Name Description
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14.3 Relationships
Section 9.7.6 on page 77 gave a short description of how relationships are
documented in our domain models. Relationships are binary since this
considerably simplifies the theory and also the transformation of domain
models to implementations. It is well-known to all practitioners of
information systems modeling that ternary relationships and higher can be
transformed to a set of binary relationships by introducing an extra
common class. Having relationships of higher degree in the domain model
modelling language is a matter of convenience.

In our domain modelling language, a relationship has two ends, 1 and 2. A
1-N relationship always has the N side on the side denoted 2. This design
rule puts no restrictions on expressiveness, but significantly simplifies the
implementation of source code generators. 

The classes at the 1-and 2-side of the relationship are called class1 and
class2. A binary relationship can be viewed and implemented as attributes
in class1 and class2. The name of the binary relationship attribute in class1
is called name1to2, and the name in class2, name2to1. Relationship
operations have a naming convention that includes these names (see
Table 14 on page 121). <r12> is substituted by name1to2 and <r21> by
name2to1. <rXX> can be substituted by either <r12> or <r21>.

A relationship may be a part-of or association relationship. For part-of
relationships objects of class2 are the parts and objects of class1 are owners
of the parts. This direction convention simplifies the information quantity
analysis of an instantiated domain model significantly. Part-of relationships
have the Relationship attribute owns1to2 set to true.

The difference between part-of and reference relationships is that the
information quantities of objects in part-of relationships are accumulated in
the 2to1 direction. That is, the information quantity held by objects of
class2 for a part-of relationship belongs to the object of class 1.

In a reference relationship, the information quantity of the relational e-
constellation is owned by the instance of class2. This design decision was

o.create<attname>() Set the attribute value to the default value specified in the 
domain model.

o.delete<attname>() Sets the attribute value to undefined, or a value that 
makes o.iq<attname>() return 0.

o.set<attname>(v) Set the attribute value to the supplied value v. If the value 
violates the defined value domain, raise an exception 
where the user has the option to supply a legal value.

Table 12: Attribute operations on objects of class C.

operation name Description
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made since in foreign key implementations of 1-N relationships in
relational databases the foreign key is placed in the table on the 2-side.

The Relationship attributes only store statistics for the direction 1to2. The
corresponding statistic measures probabilityClear2to1, avgCardinality2to1
are constrained by a set of equations:

(EQ 17)

(EQ 18)

(EQ 19)

(EQ 20)

Table 13: Relationship attributes.

Name Description

name An identifier for referring to the relationship. From our 
experience, a good naming convention is to name the 
relationship “<name2to1>_<name1to2>”. 

definition A definition of the relationship in one or a few sentences.

name1to2 The name used when referencing the relationship from 
class1. Substitutes <r12> in the operation names.

name2to1 The name used when referencing the relationship from 
class2. Substitutes <r21> in the operation names.

owns1to2 Set to TRUE if the relationship is a part-of relationship.

type The type can be 1-1, 1-N or M-N.

mustExist1 Flag set to true, if there must exist an instance of class1 for 
each instance of class2.

mustExist2 Flag set to true, if there must exist at least one instance of 
class2 for each instance of class1.

probabilityClear1to2 Probability that an instance of class1 does not participate in 
the relationship.

avgCardinality1to2 Estimated average cardinality of the set of instances of 
class2 for instances of class1 that have this relationship.

stdCardinality1to2 Standard deviation for the avgCardinality1to2.

avg R( ) 1 p01to2 R( )–( ) avgC 1to2 R( ) avg×× C1( )=

avg R( ) 1 p02to1 R( )–( ) avgC 2to1 R( ) avg×× C2( )=

p02to1 R( ) 1
avg R( )

avg C2( ) avgC2to1×
-------------------------------------------------- 

 –=

avgC2to1
avg R( )

avg C2( ) 1 p02to1 R( )–( )×
------------------------------------------------------------------=
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where R denotes the Relationship, avg(|R|) the average number of relational
e-constellations, p01to2 = probabilityClear1to2, avgC1to2 =
avgCardinality1to2, avg(|C1|) is avgCardinality for class 1.

For 1-1 and 1-N relationships avgCardinality2to1 is always 1. For M-N
relationships probabilityClear2to1 and avgCardinality2to1 are constrained
by (EQ 21).

(EQ 21)

14.4 Relationship operations
The operations described in this section should be provided for both class1
and class2 and operate on a (virtual or real) attribute implementation of the
relationship. 1-1, 1-N, and M-N relationships have the same set of
operations to provide compatibility for algorithms. In the operation naming
convention c.<opname><rXX>(<parameters>) c can be either class1 or
class2, <opname> is the operation name and <rXX> the name of the
relationship reference attribute in direction 1to2, or 2to1 that is name1to2
or name2to1.

Table 14: 1-1 Relationship operations in both directions.

operation name Description

o.all<rXX>() Return a collection holding the object on the other side of 
the 1-1 relationship. If there is no object, return an empty 
collection.

o.size<rXX>() Return an integer holding the size of the collection 
returned by c.all<rXX>()

o.get<rXX>() Return the object on the other side of the relationship.

o.iq<rXX>() Return the information quantity owned by the 
relationship.

o.has<rXX>() Return true if the relationship holds an object.

o.canAdd<rXX>(oid) Return true if oid can be added to the relationship without 
violating any cardinality constraints.

o.create<rXX>(oc) Return an new object of the opposite class, which is 
created and added to the relationship. oc is an ordered 
collection with references to objects in other relationships 
in which the new object must participate to fulfill the 
cardinality constraints.

o.add<rXX>(oid) Add an existing object of the opposite class to the 
relationship if allowed by cardinality constraints.

1 p02to1 R( )–( ) avgC 2to1 R( )× avg R( )
avg C2( )
-----------------------=
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The following subsections describe some 1-1 relationship operations that
calculate or influence the information quantity of the product model.

14.4.1 o.iq<rXX>()

Return the calculated owned information quantity for the relationship
according to the following conditions.

(EQ 22) not(o.has<rXX>()) : 0

(EQ 23) o.has<r21>() : 1

(EQ 24) o.has<r12>() & not(owns1to2(r)) : 0

(EQ 25) o.has<r12>() & owns1to2(r) : o2.iq()

where o2 is the object on the 2-side of the relationship.

14.4.2 o.create<rXX>(oc) -> oid

Create an object of the opposite class and include it in the relationship if
there is not already an object in the relationship. If the operation succeeds,
the information quantity change is the number of e-constellations owned by
the newly created object. oc is an ordered collection with any objects that
the newly created object must have relationships to in order to fulfill the
cardinality constraints.

14.4.3 o.add<rXX>(oid)

Add an existing object of the opposite class to the relationship if possible.
Cardinality restrictions may prevent an add operation to be completed. If

o.set<rXX>(oid) Force set the object on the opposite side to oid, with 
brutal maintenance of cardinality constraints.

o.remove<rXX>(oid) Remove the relationship to the supplied object if it exists. 
This operation is provided for compatibility with 1-N and 
M-N relationships.

o.removeAll<rXX> Remove the relationship to the related object if there is 
one.

o.delete<rXX>(oid) Delete the supplied object if it is contained in the 
relationship. This operation is provided for compatibility 
with 1-N and M-N relationships.

o.deleteAll<rXX>(oid) Delete the object on the other side of the relationship if 
possible.

Table 14: 1-1 Relationship operations in both directions.

operation name Description
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the operation is successful the information quantity change is 1.

14.4.4 o.set<rXX>(oid)

Force set the object on the opposite side to oid (if legal) with “brutal”
maintenance of all referential integrity constraints. Brutal means removing
or deleting any previous object in the relationship for both o and oid, and
forcing all cardinality constraints which may lead to the deletion of several
other objects attached by cardinality constraints. This is a way to avoid the
need for a special garbage collection algorithm. The set-operation may take
nil56 as its parameter value if nil is available in the implementation
language.

Information quantity change: 

(EQ 26) owns1to2(r) & not(o.canAdd<rXX>()) : o.iq() - o2.iq()

(EQ 27) owns1to2(r) & o.canAdd<rXX>() : o.iq()

(EQ 28) not(owns1to2(r)) & o.canAdd<rXX>() : 1

(EQ 29) not(owns1to2(r)) & not(o.canAdd<rXX>()) : 0

Where r is the relationship. o is the instance referenced by oid. o2 is the
previous instance of class2 held in the relationship. owns1to2(r) is a flag
set by the domain model designer and tells which relationships are part-of
and which that are “only” associations. The predicate canAdd<rXX>
returns true if the current state of the objects and the cardinality constraints
would allow an o.add<rXX>(oid) operation to succeed.

14.4.5 o.remove<rXX>(oid)

Remove the supplied object from the relationship, if possible. This
operation is provided for compatibility reasons. The information quantity
change is -1, if the operation was successful.

14.4.6 o.removeAll<rXX>()

Remove the relationship to the related object if there is one. The
information quantity change will be -1 if there was a related object.

14.4.7 o.delete<rXX>(oid)

Delete the supplied object if it is contained in the relationship. This
operation is provided for compatibility with 1-N and M-N relationships.
DeleteAll does the same thing, but needs no reference. The Information
quantity change is 

(EQ 30) - o2.iq()

56. An object representing the NULL-object.
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where o2 is the deleted instance referenced by oid.

14.4.8 o.deleteAll<rXX>()

Delete the object on the other side of the relationship if possible. If there is
an instance on the other side of the relationship, the information quantity
change is the same as for o.delete<rXX>(oid).

14.5 1-N & M-N Relationship operations
1-N & M-N relationships have the same set of operations as 1-1
relationships, but the semantics is adjusted for the augmented cardinality of
these relationships.

Table 15: 1-N Relationship operations in both directions.

operation name Description

o.all<rXX>() Return an ordered collection holding all objects on the 
other side of the relationship. If there are no objects, 
return an empty collection.

o.size<rXX>() Return an integer holding the size of the collection 
returned by o.all<rXX>().

o.get<rXX>() Return the first object on the other side of the 
relationship. If there is no object return nil.

o.iq<rXX>() Return the information quantity owned by the 
relationship.

o.has<rXX>() Return true if the relationship holds at least one object.

o.create<rXX>(oc) Return an new object of the opposite class, which is 
created and added to the relationship. oc is an ordered 
collection with references to objects in other relationships 
in which the new object must participate to fulfill the 
cardinality constraints.

o.add<rXX>(oid) Add an existing object of the opposite class to the 
relationship.

o.set<rXX>(oid) The operation is done in three steps. For a part-of 
relationship, first delete all objects. For a reference 
relationship first remove all objects. Then remove any 
object from oid that occupies the place which o will take. 
Finally add the object referenced by oid to be the single 
object on the other side.

o.remove<rXX>(oid) Remove the supplied object from the relationship, if 
possible.



125

The following subsections describe some 1-N and M-N relationship
operations that calculate or influence the information quantity of the
product model.

14.5.1 o.iq<rXX>()

Return the information quantity within the relationship that is owned by o.
There are 3 different cases, which are described in (EQ 31) to (EQ 33).

(EQ 31) owns1to2(r) & <r12> : 

(EQ 32) not(owns1to2(r)) & <r12> : 0

(EQ 33) <r21> : o.size<r21>()

14.5.2 o.create<rXX>(oc) -> oid

Create a new instance and add it to the relationship. oc is an ordered
collection with any objects that the newly created object must have
relationships to, in order to fulfill the cardinality constraints. The
information quantity change is the number of e-constellations owned by the
newly created object. Return an oid to the new instance.

14.5.3 o.add<rXX>(oid)

Add an existing object of the opposite class to the relationship if possible.
For 1-N relationships, cardinality restrictions may prevent the add
operation to be completed. If the operation is successful, the information
quantity change is 1.

14.5.4 o.set<rXX>(oid)

Simulates the o.set<rXX> behaviour of an 1-1 relationship. For a part-of
relationship, it works as a deleteAll<rXX>() followed by an
add<rXX>(oid)-operation. For a reference relationship it works as a
removeAll<rXX>() followed by an add<rXX>(oid)-operation. The
information quantity change can be derived from the deleteAll, removeAll
and add operations.

o.removeAll<rXX>() Remove all related objects from the relationship.

o.delete<rXX>(oid) Remove the supplied object from the relationship and 
delete it.

o.deleteAll<rXX>(oid) Delete all objects on the other side of the relationship.

Table 15: 1-N Relationship operations in both directions.

operation name Description

o2.iq i2( )
o2∀ o.all<r12>()∈

∑
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14.5.5 o.remove<rXX>(oid)

Remove the supplied object from the relationship, if possible. The
information quantity change is -1 if the operation was successful.

14.5.6 o.removeAll<rXX>()

Remove all objects in the relationship.The information quantity change is
o.size<rXX>().

14.5.7 o.delete<rXX>(oid)

Delete the supplied object if it is contained in the relationship. The
Information quantity change is:

(EQ 34) - o2.iq()

where o2 is the deleted instance referenced by oid.

14.5.8 o.deleteAll<rXX>()

Delete all the objects on the other side of the relationship if possible. The
information quantity is given in (EQ 35).

(EQ 35)  

14.6 Higher degree relationships
Some small percentage of the relationships within a domain model may
have to be of a higher degree than binary, for instance ternary
<<O1,O2,O3>,R>. A ternary relationship is transformed into a class with
three connected binary relationships. Their cardinality constraints may
make it impossible to create the simulated relationship-instance with one
atomic create<rXX>(oc)- and two add<rXX>-operations, without violating
the integrity of the product model database for a moment. In these cases the
objects required to fulfil the cardinality constraints have to be supplied in
the ordered collection oc that is a parameter of the create<rXX>(oc)-
operation.

If instances of ternary relationship constellation types are to be calculated
as 1 e-constellation instead of 3, an adjustment in the equations for
information quantity change must be made.

In practice, however, most ternary and higher degree relationships will
require some attributes, for instance a timestamp when the relationship was
created, and thus they must be transformed into a class anyway.

o2.iq i2( )
o2∀ o .all<r12>()∈

∑
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14.7 Cardinality calculation examples
Here follow two simple examples of statistical calculations on the
benchmark domain model (Figure 32 on page 108) that summarize the
terminology introduced.

14.7.1 1-N relationship department_products.

We have a sample benchmark database with one company (c1) that owns
four departments (d1, d2, d3, d4) thus Department.avgCardinality = 4.
Department d1 has no products. Department d2 owns products p1 and p2.
Department d3 owns products p3 and p4. Department d4 owns products
p5,p6,p7,p8 and p9. Thus Product.avgCardinality = 9.

Since there is one department d1 of the four departments that has no
product, department_products.probabilityClear1to2 = p01to2 = 1/4. The
relationship attribute department_products.avgCardinality1to2 is defined to
be the average cardinality of products that are owned by the departments
that have one or more products. Thus avgC1to2 = (2+2+5)/3 = 3. The
relationship attribute department_products.stdCardinality1to2 is the standard
deviation. Thus stdC1to2 = sqrt(22+22+52-32*3)/3) = sqrt(2).

From (EQ 17) we derive : avg(|R|) = (1-1/4) * 3 * 4 = 9, there are nine
relational e-constellations of type department_products in our database. In
a 1-N relationship, avgCardinality2to1 is 1 per definition.

From (EQ 19) we derive : p02to1 = 1- 9/( 9*1 ) = 0.

14.7.2 Hierarchical 1-N relationship owner_owns.

Figure 36 on page 111 shows the sample population of 15 articles. The
relationship cardinality instances are ordered by left-to-right, top-down.

p01to2 = 9/15 = 0.6.

avgC1to2 = (3+2+3+1+2+3)/6 = 2.33.

stdC1to2 = sqrt(32+22+32+12+22+32-2.332*6)/6) = 0.75

From (EQ 17) : avg(|R|) = (1-0.6) * 2.33 * 15 = 14

From (EQ 19) : p02to1 = 1- 14/( 15*1 ) = 0.067

This kind of statistics can be used by a user interface compiler for selecting
view implementation classes for various types of views (Section 18.3.4).
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15 An Information-oriented Task 
Description Language

This chapter introduces a language for information-oriented task
descriptions which can be used as a declarative input specification for a
heuristic user interface design algorithm.

Section 15.1 introduces some hypothetical measures on user interfaces for
object-oriented systems that are a step towards the design of a global goal
function for user interface configurations for complex KBS-applications.
These will contain hundreds of different forms and graphical browsing
views. The introduction motivates the detailed declarative descriptions of
the tasks.

The task descriptions describe HOW the information will be used in the
PMS or KBS.

15.1 Some hypothetical measures on KBS user 
interfaces

In KBS-applications which use product models with thousands of
components, the user interface for creating and maintaining the models
should be optimized for performing the most frequent tasks.

An example of an improving step in such an optimization could be to
change the representation of the object editors presented in the 2D Article
View in Figure 36 on page 111 to present additional e-messages, for
instance by adding attribute editors for the dtModified attribute in the lower
left corner of the Article object editor nodes.

The added information might be needed for performing a certain task. This
may save the user many interaction operations that otherwise would be
needed to get the necessary information entities on the screen. The views
picture the contents of the knowledge-base. To know how to design each
type of view, we have to know how it is going to be used, which means
knowing the user’s tasks. 

We assume that the user works according to the ten principles of the model
of a human information processor [Card et al. 83]. See Appendix D.

At system design time, the predictable behaviour of a user while
completing a task has a number of free and bound “design variables”.
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The rationality principle decomposes the “high-level” behavior of a user
into different influencing components :

P8. Rationality Principle. A person acts so as to attain his goals through 
rational action, given the structure of the task and his inputs of 
information and bounded by limitations on his knowledge and 
processing ability:

Goals + Task + Operators + Inputs + Knowledge + 

Process-limits ⇒ Behavior (EQ 44) 

The design of the user interface can influence the form of Operators,
Inputs, and user’s Knowledge57. The Task, and Goals must have been found
in earlier stages of the knowledge acquisition process.

Once sufficient Tasks, Goals, semantic Operations and Inputs have been
elicited for the KBS-application, the syntactic and lexical implementation
of Operators and Inputs provided by the user interface can be designed,
with guidance from the model human information processor and its ten
principles. A numerical “goodness”-estimate for the UI-design will finally
become parameterized formulas that try to minimize the operation time and
user remembering effort in terms of primitive motor operations and the
number of chunks needed in long term memory, i.e. the amount of
knowledge necessary for operating the interface. See Appendix E.

Such calculations will have much in common with GOMS-analysis58.
Examples show that the number of parameters necessary to get a useful
estimate of any realistic user interface will make the calculation work
difficult without computer support. A fixed user interface software
architecture (UISA), such as the one that is presented in Part IV, should
ease the implementation of such estimation support.

During the prototyping phases in PMS and KBS development, the
interaction schemes used by the experts who maintain the domain
knowledge models will be unknown. The schemes (for the user’s Behavior
in P8) will very much depend on which KB-views are available in the user
interface (i.e. how Inputs are provided to the user) and how commands (i.e.
Operators) are made available, and it might take several prototype
iterations with modified views before a satisfactory solution is found. After
empirical studies of the experts a better understanding of how they interact

57. Knowledge in this context means what is needed for handling the user interface. In the
design stage of a KBS we assume that there is no problem in training the user how to
operate any user interface style. 
58. GOMS-Analysis (Goals, Operators, Methods, Selection Rules) is an analysis-technique
that has been applied on word-processing tasks (i.e. editing text instead of knowledge-
bases). It showed less than 40% root mean square error in predicting the time to perform
certain editing tasks for skilled typists.[Card et al. 83] p. 428-429. The GOMS model is
extensively explained in chapter 5 of [Card et al. 83]. A shorter description can be found
in [Kieras 88].
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with the knowledge-base will emerge. This may be input to a reformulation
of task descriptions and a redesigned user interface with less average
operation time for performing certain tasks. Considering the effort spent on
developing and maintaining product models and knowledge bases, such a
redesign could be a good investment.

A fixed structure of the UISA like the one presented in Part IV enables
implementation of the automatic collection of statistics from the user
interface. This will show which user interface components are most
frequently used. Statistics may also indicate targets for improvements and
short-cuts. 

Below, we propose the hypothetical measures of accessibility and
operability and indicate how they could be calculated on instances of user
interfaces developed with the proposed UISA.

Note that the expression of these measures in equations is a tool for a
compact presentation of how things relate. The main purpose of using
equations is to explain what the measures mean and to suggest a framework
for evaluating user interfaces designed with our UISA. Detailed
experiments and tuning with parameters must be conducted before they can
give any precise information on how to improve a user interface
configuration.

15.1.1 Access time and access costs

When working interactively with a large product model or knowledge-base,
we want to minimize the user’s access time for finding elementary
constellations e that are modelled within the knowledge-base K. The access
time depends on the current state s of the display which denotes the current
configuration of views vi on the screen, and the different information
access paths provided by available browsers and views specified in the user
interface configuration U. Access time at(K,U,s,e) can be defined as the
time it takes a model human information processor to locate an e-message
m in a view vi on the screen that carries the e-constellation e. In many
situations there is no view vi on the display that contains m. The user must
issue some commands or browse along a path of views through the
knowledge-base to find a view vi such that m ∈ vi (see the example in
Appendix F on page 223).

In display state 1 of Appendix F, for instance, there is only one view
available which visualizes the structure of an aircraft product model. In
addition to the display state s, the access time depends on what browsing
path the user selects since there may be many possible paths in a
knowledge-base with a complex meta-model. 

The behavior of a user when “walking” a view path will depend on his/her
preferences and previous knowledge. There might be short-cuts available in
the interface, but if the user does not know them he, will not use them. This
phenomenon is captured in the rationality principle P8. Take for instance an
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operator issued by a command that creates a view v5 that visualizes the part
of the project plan where a certain geometry part is defined (see display
state 4 and 5 in Appendix F). This operator could be applied both by
selecting a command from a menu or by issuing a keyboard shortcut. The
access time will depend on whether the user knows and remembers the
keyboard short-cut and uses it, or if he prefers to select the command from
the probably slower menus.

In a complex user interface with hundreds of operators it seems to simple to
just calculate the optimal access times for getting a quantitative estimate of
the “goodness” of the interface. A perhaps better but less easy to implement
way is to assign some kind of access cost c(e,s) that reflects the cost to
access e given the display state s for a particular user. This cost can be a
synthesis of the available possibilities of applying operators, the users
preferences and knowledge about them and possibly some more factors that
are individual for each user. The exact value of this cost is not important,
but it is important to know how it can be influenced. To give an extreme
example, the cost c(e95,s23) of accessing the e-constellation e95 given
display state s23 could be significantly reduced by providing a special
function key that pops up a view that displays an e-message that carries e95
given that the user is taught exactly how to use this function key. However,
the number of such specialized function keys or keyboard short-cuts will
become impossible for the user to remember. There must be a balance in
the interface design between best possible access times and difficulty to
learn and remember. The user interface should, for instance, be consistent
because this reduces the amount of specialized interface knowledge that a
user has to acquire and remember. Each individual access time and access
cost is not very interesting in itself but together they constitute important
influencing factors on the impression and attitude that the user gets while
working with a particular interface.

It seems tedious to calculate some kind of quantitative measure of this
impression based on access costs. However, it seems worthwhile to
formulate how parts such as individual access costs add to the whole global
impression of the interface since such a formulation can guide a user
interface designer in deciding where and what to improve.

15.1.2 The task and its information set

Why do we need access to particular e-constellations that are modelled in a
knowledge-base? This question is usually impossible to answer for all
cases at the time when the user interface is designed. However if there is a
particular task that a knowledge-base user has to perform, it is possible to
identify different e-constellation types that will have to be read, or
modified in order to complete the task.

Many tasks are complicated and the number of e-constellations to be read
and modified for their completion can be large. A good user interface
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provides fast access to those e-constellations that are needed frequently and
it provides some access to the ones that are less frequently needed. The
interface should be balanced to find some kind of optimum. Before that is
possible, some kind of measure on the access frequency of different types
of e-constellations has to be found. There might be other influencing
factors on why it is important to access a particular e-constellation.

Some e-constellations are used as travelling paths during the browsing of a
knowledge base. The structure of a product model, for example, may be
“walked” many times during the design of a product. Therefore the
components of the e-constellations that define this structure may be
accessed very frequently. The structural model of the car braking system in
Figure 47 on page 224 can, for instance, be used as an index view to access
e-constellations that hold information about individual brake tubes and disk
brakes. The task of designing a car braking system may need this
information very frequently. For a task T a hypothetical importance weight
iw(e,T) could be defined for each e-constellation that is needed for
completing T. Elementary constellations modelled in the knowledge-base
that are not related to T have iw(e,T) set to zero.

The importance weight should reflect a relative importance between
different individual e-constellations. The sum of importance weights could,
for instance, be normalized to a constant N, where N is the total number of
e-constellations used for completing the task.

(EQ 36)

It may be tedious to estimate a figure for individual importance weights
manually, but a partial ordering of their importance could be made by an
expert by pair-wise comparison, or ordering of e-constellations into groups
that are pair-wise compared. From the results of the comparison the
individual importance weights can be computed by an algorithm.

There are other ways to define the importance weights. See the definition
on page 138.

15.1.3 Accessibility

Accessibility is a hypothetical measure of how easy a user can access e-
constellations e in the knowledge-base K through a particular user interface
design. Since only small portions of the knowledge-base can be displayed
at any one time, the user will frequently have to browse through it in order
to locate e-messages that carry the needed e-constellations. 

The accessibility acc(T,K,U,s) can be hypothetically calculated for a
particular task T on a knowledge-base instance K given the user interface
configuration U which defines the different information access paths
provided by available browsers and views and the current state s of the

iw e T,( )
e∀ K∈
∑ N=
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display. The task T will determine which elementary constellations e in the
knowledge-base are important for it and assign them a corresponding
importance weight iw(e,T). The access cost to bring an e-message carrying
e to the display surface will reduce the influence of e’s importance weight
on the accessibility. The total accessibility will be the sum of each e-
constellation’s importance weight divided by its associated access cost. 

(EQ 37)

As mentioned earlier, this equation does not say anything precise but gives
an idea of how changes in the interface could be made in order to increase
accessibility. 

15.1.4 Operability

In an incremental environment, the operability of a user interface is a
hypothetical measure of how easy the information in the knowledge-base
can be manipulated through it. Operations on the knowledge-base may be
thought of as assembling, changing and deleting models consisting of e-
constellations. Operability is measured with respect to a task T in the same
way as accessibility, but here we put operation importance weights
opiw(ectr,op,T) on the different operations op that are available on an
object playing a reference in the elementary constellation type role ectr59.

At a certain display state s, the operation cost is opc(o,op,U,s), where o is
an object in the knowledge base, U is the user interface configuration,
containing definitions of all forms and browsing views available for task T,
and how they can be reached from any display state s.

(EQ 38) defines the operability for task T on a general knowledge-base K
with the user interface configuration U and the current display in state s.

(EQ 38)  oper(T,K,U,s) =

where ectrs(o,T) returns a set of all elementary constellation type roles for
instances o of a particular class within task T. ops(o,ectr,U,s) returns a set
of all operations available on o for ectr in the user interface configuration

59. A description of the domain modeling concept ectr is given in section 15.7 on page 137

acc T K U s, , ,( ) iw e T,( )
c e U s, ,( )
----------------------

e∀ K∈
∑=

opiw ectr op T, ,( )
opc o op U s, , ,( )

-----------------------------------------
op∀ ops o ectr U s, , ,( )∈

∑ 
 
 

ectr∀ ectrs o T,( )∈
∑ 

 
 

o∀ K∈
∑
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U at display state s. opiw(ectr,op,T) returns the importance weight of op
for ectr in task T. It may simply be 1 if the operation is needed for T and 0
if not. A more detailed cost model may compute opiw from usage statistics
taken from logged prototype sessions.

The operability is heavily determined by the user interface configuration U.
The operation cost opc(o,op,U,s) is a combined function of the available
browsing paths from display state s with forms and browsers available for T
within U, and of the individual users knowledge about how to walk them
from display state s and how to issue commands that apply operations on
objects. 

15.2 Object model of the task description 
concepts

FIGURE 39. Object model diagram of the task description language.

Figure 39 shows how the primitives used for the task-description language
are related. The users of a product modeling system are assigned user roles
to which a set of tasks belong.

Examples of UserRoles from our benchmark domain model are
ExecutiveDirector, ChiefDesigner, ProjectManager and Designer.
Examples of Tasks related to the product modeling system for, for instance
the ChiefDesigner are ArticleStructuring, ArticleChecking and
ArticleApproval. 
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The ArticleStructuring task requires flexible read and modification access
to the information in the product model, while the ArticleChecking task
only should provide modification access to the checkedBy attribute value.

How the information is accessed in the different tasks is documented in one
or many InfoSets. An information set contains descriptions of how attribute
e-constellations and relational e-constellations are going to be used. These
e-constellation access descriptions are instances of AECTRole and
RECTRole.

Some product model modifications need to be organized into atomic
transactions in order to keep the product model (or KBS) in a legal state.
Such transactions are documented in a UserTransaction that relates to one
InfoSet instance that describes the roles of the involved e-constellations.

15.3 UserRole
A user role describes responsibilities for a particular type of user/actor
within the system.

15.4 Task
A task within a domain model defines a standard task that requires access
to a specified set of information.

15.5 UserTransaction
Defines an infoset with modifiable e-constellations that are written to the

Table 16: UserRole attributes.

Name Description

name A descriptive name for the user role.

definition A definition of the user role in a few sentences.

Table 17: Task attributes.

Name Description

name A descriptive name for the task.

definition A definition of the task in one or a few sentences.
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database in one user transaction.

15.6 InfoSet
Information sets describe sets of information that play certain roles during
the completion of a task or particular user transaction.The members of
information sets are pairs <ecrole,ectype>, where ecrole is a role identifier,
and ectype is an attribute- or relational e-constellation type (<O,A> or
<<O1,O2>,R>).

15.7 Elementary constellation type role, 
ECTRole

Attribute and relationship e-constellation types were defined in
section 12.4.5 on page 102. An instance ectr of ECTRole defines the
presence of an e-constellation for a particular purpose within a task.
ECTRole is a common superclass holding some shared attributes for
AECTRole and RECTRole.

The following two ECTRole attributes are discussed in more detail.

Table 18: UserTransaction attributes.

Name Description

name A descriptive name for the user transaction.

definition A definition of the user transaction in one or a few sentences.

Table 19: InfoSet attributes.

Name Description

name A descriptive name for the information set.

definition A definition describing the purpose of the infoset.

Table 20: ECTRole attributes.

Name Description

importanceWeight Relative importance of an e-constellation in this ectyperole 
for the task. Used for specifying a priority on which e-
messages to provide the best access for in the user interface.

ecrole Identifies a role that an e-constellation plays within a user 
transaction or information set.
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importanceWeight : Another definition for which the importanceWeight
number gets a meaning is; 

Definition : The importance weight is the probability that the information in 

the e-constellation will have an influence on the information 

created by the user if he/she reads (and interprets) an e-message 

for it during the completion of the task.

ecrole: An identifier that describes the role of an e-constellation of a
certain type within a user transaction. The identifier is needed when two or
more instances of the same elementary constellation type are used for
different purposes. This may, for example, occur when two Article-
instances from the benchmark domain model are to be connected in the
hierarchical relationship owner_owns. Two aect’s <Article,ref_id> with the
ecroles ownerRef and partRef are used to provide the references to the
owner and the part. At runtime, the attribute e-constellation
<anOwnerArticle, <ref_id, anOwnerArticleRefId>> provides a selectable60

reference to anOwnerArticle which has the ecrole ownerRef and
<aPartArticle, <ref_id, aPartRefId>> provides a selectable reference to
aPartArticle and has the ecrole partRef. The operation completed within
the user transaction creates the relational e-constellation
<<anOwnerArticle, aPartArticle>, owner_owns>. 

During prototype development it may be hard to identify and give a name
to the ecroles for individual e-constellations. The default ectr is to
represent an instance of the class and the default ecrole name is
<Class><occurrence> or just <occurrence>, where <occurrence> is an
integer counting the number of distinct occurrences of the e-constellation
type within the same information set.

15.8 Attribute e-constellation type role 
AECTRole

An AECTRole documents access rights for a certain ecrole within the
information set; see Table 21.

60. See section 19.2 "The selection manager" on page 160.

Table 21: AECTRole attributes.

Name Description

name Name of the format <Classname>.<attributename>.

definition A comment describing the purpose of this AECTRole within 
the infoset. Can be omitted in most cases.



139

15.9 Relationship e-constellation type role 
RECTRole

A RECTRole specifies a role that a relationship may play in a certain task.

15.10 Summary
The information-oriented task description language contains the primitives
UserRole, Task, UserTransaction and InfoSet. A task may own many
InfoSets, but the information affected by a particular UserTransaction is
always specified in one InfoSet.

Each InfoSet holds a set of e-constellation type roles (ECTRoles) that may
be of either of its subclasses AECTRole or RECTRole.

The function of the ECRole is to uniquely identify e-constellations of the
same e-constellation type that are used for different purposes within the
same InfoSet.

accessRights Access rights to the attribute e-constellation in this ecrole, for 
the user role that performs its task. Can be R,C,U,D for Read, 
Create, Update and Delete. Can be used by interface 
compilers when selecting interface functionality or menu 
choices for operations.

identificationWeight A key weight. The probability that the user can uniquely 
identify an object for the purpose of the task by looking at the 
value of an e-constellation of this attribute e-constellation 
type, given no other information about the particular object.

Table 22: RECTRole attributes.

Name Description

name Name in format<Classname>.<side><nameXtoX> where 
<side> specifies which end of the relationship the 
RECTRole is viewed from.

definition A comment describing the purpose of the rect-role within 
the infoset. Can be omitted if obvious.

accessRights Access rights to the relation e-constellation in the rect-
role for the user role that performs its task. Can be 
R,C,A,R,D for Read, Create, Add, Remove and Delete. 
Can be used by interface compilers when selecting 
interface functionality or menu choices for operations.

Table 21: AECTRole attributes.

Name Description
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16 The Benchmark Task Descriptions

The benchmark domain model and task descriptions are selected to be a
representative example that can be extended with details to cover a fully
operational set of functional features necessary for efficient
implementation of PMS-development platforms.

This chapter is an informal introduction to the task descriptions for the
benchmark domain model. Appendix B page 190 shows a more detailed
example of a task description.

A benchmark product model database is managed by four user roles.
ExecutiveDirector, ChiefDesigner, ProjectManager and Designer.
Figure 40 on page 143 shows the responsibility areas for different user
roles within the domain model. The information in these areas is created,
updated and deleted by the user assigned to that user role.

16.1 ExecutiveDirector tasks

16.1.1 DepartmentManagement

Involves the creation, deletion and update of attribute values in instances of
Company and Department.

16.1.2 Product Inspection

Involves browsing the information from a Company instance down to
Product and ProductData.

16.2 ChiefDesigner tasks
In addition to the tasks presented below, a chief designer can do all tasks
that a ProjectManager and Designer can do.

16.2.1 Product Management

Involves the creation, deletion and update of attribute values in instances of
Product, ProductData, C and its subclasses.
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16.2.2 Article Checking

Involves browsing of article structures, marking them as checked by
entering the login-id in the checked_by field.

16.2.3 Article Approval

Involves browsing of article structures, and marking them as approved, by
entering the login-id in the approved_by field.

16.3 Project Manager tasks
The project manager is responsible for creating a hierarchical design
activity plan for a certain product.

16.3.1 ProjectMonitoring

Involves browsing of article and activity structures.

16.3.2 ActivityPlanning

Involves creation and deletion of DesignActivity objects, and building
substructures having their corresponding deliverables.

16.4 Designer tasks
A designer makes the detailed design decisions for articles and their
structures.

16.4.1 Article Structuring

Involves interactive creation of articles and article structures.

16.4.2 Article Design

Involves interactive assignment of attribute values for articles, and
IncludedArticles.
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FIGURE 40. Responsibility areas for the different user roles in the 
benchmark domain model.
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16.5 Specifying a functionality feature checklist
To be able to verify and validate source code generators, a complete
specification of the functionality that these must generate must be created
and published.

Our development environment contains source code generators for the
product model database, the CAD-PMDB interface, and for graphical user
interface browsers.

For the PMDB and CAD-PMDB interface, a functionality feature check list
should contain specifications of the naming rules, the functionality,
exceptions and returned error and status messages for operations with the
semantic functionality listed in Table 8 to Table 15 in chapter 14.

A functionality feature checklist for user interface source code generators
should contain the same type of specifications for operations with the
semantic functionality listed in Table 30-Table 45 in Appendix C. There
each functionality has at least one instance of its implementation in the
benchmark domain model. To make a feature list easier to comprehend,
each functionality should be exemplified by one instance from the
benchmark domain model.

A source code generator company, implementing source code generators
according to such a published feature list, can check that their source code
generation system covers all functionalities by thorough testing of the
exemplified instances from the benchmark domain model.
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17 Introduction to Part IV

When a domain model has been specified, it must be tested with realistic,
instantiated test cases. If a domain expert is to be able to develop such test
cases without extensive support from a software- or knowledge engineer,
he/she must be provided with a user interface that is easy to operate and
provides full access to all types of object-, attribute-, and relationship
operations described in chapter 14.

A straightforward form based object-oriented browser application for the
benchmark domain model, with one form for each leaf class that provides
access to all possible operations on objects of that class, requires 18 forms,
containing 292 attribute editors and 32 relationship editors with a total of
(18*17+292*9+32*13) = 3350 customized event procedures in a traditional
UI-toolkit development environment (see Table 35, 37, 40). For product
modeling systems with complex domain models, it is obvious that such user
interfaces cannot be implemented manually on that abstraction level if the
prototype development cycle is to remain incremental.

Chapters 18 and 19 together with Appendix C describe the user interface
software architecture (UISA). This UISA is a framework which enables
automatic generation of most of the domain model-dependent source code
for handling for instance a straightforward form-based user interface. In the
ProCAD system it is used for implementing the CAD/UI interface.

The UISA has also been tested with a Smalltalk implementation of an
instance browser for the benchmark- and ProCAD domain models. Most of
the domain model-dependent source code is generated automatically. The
graphical layout of the different user interface objects on the forms still has
to be adjusted manually to get a comfortable prototype to work with.

Measurements from source code generators and generated source code that
implements the above described functionality for the benchmark and
ProCAD domain models are reported in section 10.4 on page 88. These
show that the source code generators are a one-time programming effort
that consist of less than a 1/10 of the source code than is actually generated
from a domain model of the size of ProCAD for each prototype iteration.

Chapter 20 discusses what is needed to provide better prediction
capabilities directly from domain models and models of user interface
configurations. The relationship to some other object-oriented domain
modeling languages is described, and other UISA-architectures and Meta-
CASE-tools are discussed. The Part ends with some questions for future
work and conclusions.
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18 The User Interface Software 
Architecture

18.1 Introduction
Figure 41 shows a system model of the user - knowledge-base interaction.
The knowledge-base (KB) contains an object-oriented model of the real
system and the knowledge needed for solving the associated problem.The
user interface (UI) visualizes the information and knowledge in this model
on the screen in various representations. 

The user looks at the representations and gets help to recall his own mental
models of the different objects from long term memory into working
memory. Using graphical keys for the recall of relevant knowledge
supports and speeds up the user’s reasoning processes. 

The user enters text and commands via the keyboard and issues commands
and changes the focus of operation with the mouse. Key strokes and mouse
events are transformed to messages by the window system which sends
them to the particular user interface object in the current focus61 of the
object-oriented user interface state model. The user interface objects in this
model pass control to relevant routines in the UI-KB interface which in turn
carry out the semantic operations on the knowledge-base.

The above scenario can be viewed as an information-processing system
including the three interacting components; knowledge-base, user interface
and user. The basic entities to transfer between KB, UI and user are
elementary messages62 that carry elementary entities of information (e-
constellations). The purpose of a good UI is to enable a high possible
average bandwidth for elementary message transfer.

Each component in the information processing system of Figure 41 can be
described with a theoretical model. Having such models, we can estimate
the time needed for performing a certain operation on the KB e.g.
transferring information from the user to the KB or for the user to access an
entity of information in the KB given a certain user interface design.

61. The term “current focus” is often used in the context of windowing systems for
referring to the currently selected object or object pointed to by the cursor or mouse pointer.
62. The concept of elementary messages for analysis of information contents is a part of
the infological theory that was developed by Sundgren [Sundgren 73]. It represents
minimal units of information, where information is data that gets a semantic interpretation
in the receiver of the message. See chapter 12 on page 97 to recall the infological theory.
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A typical performance measure could be an estimate of the time it takes for
the user to find an information entity in the KB by following an interaction
path. The path includes the average times to move the mouse to certain
mouse sensitive areas, to bring up menus, to select the right choice, and for
the system to visualize the information views on the screen. 

See Appendix F for an example of such user interaction. This type of
calculation might become very important, since engineers and experts in
the future will spend man-years on KB interaction via a particular UI. 

FIGURE 41. A systems and subsystems model of the user-user interface - 
knowledge-base interaction.

The theoretical model of the KB which was presented in chapter 14 is a set
of concepts that can be used to describe object-oriented, and to some extent
frame-based software systems. It is compatible with suggested
implementation technology for object-oriented databases [Kim 90][Cattell
et al. 96] and object-oriented languages [Wegner 87]. There are of course
other models for object-orientation such as prototypes and delegation
[Ungar et al. 87] that could be used, but the majority of research efforts and
promising commercial systems adhere to the class-instance distinction that
is explicit in this model.

The model of the user is adopted from Cart, Moran and Newell [Card et al.
83] (Appendix D on page 215). A description of the nature of human
memory is given in Appendix E page 218.

The abstract model of the UI is described in section 18.2. A strong
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guideline for the design of the UISA has been to have a direct mapping
between concepts in the user interface model and concepts in the
knowledge base which have their formal definition in the domain model. 

The design has also been generalized and synthesized from theoretical
studies and practical experience with various window systems63.

The notational convention for the following sections are as follows. Static
concepts that are not changed in the delivery system are denoted by capital
letters. Dynamic concepts that are created and may change in the delivery
system have lower-case letters. A variable holding an instance of a concept
is denoted by italics. A unique particular instance of a concept is
subscripted.

The following notation is used for concepts in the domain model of the
object-oriented knowledge-base. Knowledge-base object kbo, Object
identifier oid, Class C, Attribute A, attribute e-constellation aec,
Relationship R, Relational e-constellation rec. Detailed descriptions of
these concepts were given in chapter 12 and chapter 14.

18.2 Components of the UISA
In this chapter, the following components of the UISA are introduced:
Window instance w, Window type WT, window implementation class W,
user interface object uio, object editor instance oe, object editor type OET,
object editor implementation class OE, field instance f, field class F,
attribute editor instance ae, attribute editor implementation class AE,
relationship1 editor instance r1, relationship1 editor implementation class
R1, relationshipN editor instance rn, relationshipN editor implementation
class RN, link editor instance le, link editor implementation class LE, view
instance v, view implementation class V.

Some statistical parameters and operations on the above listed components
are described in Appendix C. 

Chapter 19 describes some other important components in the UISA,
namely the display manager DM, selection manager SM, clipboard
manager CM and transaction manager TM.

In Figure 42 an object model diagram of the components described in this
chapter is shown. Instance configurations of this model implement the
object-oriented user interface state model layer in the UI shown in
Figure 41.

63. The following have been studied: KEE Pictures [Intellicorp 87], Microsoft Windows
Version 3 [Microsoft 90], X-Window system and Xt [Young 89]. To some extent: ET++
[Weinand et al. 88], The Model-View-Controller [Krasner&Pope 88]. 
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FIGURE 42. Object model diagram showing relationships between different 
user interface objects uio in the domain model of the user 
interface state.

Each window instance w has a reference to a knowledge-base object that
serves as a root for the information visualized in the window. A window
may own a set of object editors oe that provide access to other kbo’s related
to the root kbo.

An object editor can own a set of attribute editors ae, a set of relationship1
editors r1 and a set of relationshipN editors rn. An attribute editor provides
visualisation and editor functionality for attribute e-constellations that
belong to the kbo held by the object editor oe. The relationship editors
provide similar functionality, but for relational e-constellations in which
the kbo participates. A common name for editors owned by an object editor
is field or field editors f.

In windows providing visualisation of graph and network structures in the
knowledge base, a link editor le is used for editing kbo’s that represent a
link between two other kbo’s. When providing 2D visualisations of
instances of the benchmark domain model, instances of IncludedArticle
which implements an M-N relationship between Articles can be represented
by link editors. The same applies to Deliverable where the M-N
relationship is between activities.
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18.2.1 User interface object (uio)

All classes in Figure 42 reference a kbo and are called user interface
objects uio. An uio keeps knowledge about how to map the e-constellation
representation of a kbo in the knowledge base to an e-message
representation on the screen. The state of a uio contains, for instance,
window-coordinates and height and width of the user interface
representation. Uio’s are generated dynamically. They only exist as long as
they are accessible from the workstation display64. Most uio’s have
functionality for providing the user with access to related kbo’s to the kbo
they represent. This functionality is implemented in cooperation with the
DisplayManager DM. Other tasks of a uio include handling selections and
logging of operations issued by the user in cooperation with the
SelectionManager SM and TransactionManager TM.

18.2.2 Object Editor (oe)

An object editor owns attribute- and relationship editors that may represent
a subset of the attributes and relationships that are defined for a particular
object class. An object editor can be single within an window, see for
instance Figure 33 on page 110. This Company object editor owns eight
attribute editors and two relationshipN editors.

The kbo of object editors within the same window may be set interactively
from relationship editors when the e-message of a rec is selected. Thus a
chain of object editors linked by relationship editors may reflect a browsing
path from an object of one class via a relationship to objects of another65

class, and so on, see Figure 34 on page 110. This browser window owns 4
object editors, where the first owns two attribute editors and one
relationshipN editor.

18.2.3 Object Editor Type (OET)

An object editor owns attribute- and relationship editors that may represent
a subset of the attributes and relationships that are defined for a particular
object class. An object editor type (OET) is a predefined configuration of
an object editor, that may be instantiated many times in the same window.
Figure 35 on page 111 shows a hierarchical article browser that has four
instances of the same Article-OET.

64. If it is a requirement to be able to save the current screen layout, uios can of course be
made persistent. This feature is valuable since it often takes time to set up the views needed
for performing a certain task. This functionality can also be accomplished by saving some
of the uio state, such as coordinates and regenerating the uios from them. 
65. In the case of hierarchical relationships with both ends in the same class, chained object
editors may represent objects at different levels in the hierarchy.
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18.2.4 Object Editor implementation Class (OE)

In the case of representing kbos in 2D views the object editor
implementation class OE must provide a fast creation and initialization of
instances. A 2D view of an article structure, see for instance Figure 36 on
page 111, may contain hundreds of object editors that ought to be displayed
in fractions of a second. Object editor implementation classes are arranged
in a class-hierarchy that allows sharing of the implementation.

18.2.5 Field editor (fe)

A field editor fe visualizes one attribute e-constellation <o,<p,v>>, or one
or several relational e-constellations <<o1,o2>,r>. The encoding of the e-
message within the field, must enable the user to recall its e-concept. We
recall from section 12.5.3 on page 104 that if ρ(O) is an object group
reference where the object group is a class C, and ρ(A) is an attribute
reference, then the pair <ρ(O),ρ(A)> is called an attribute e-message type
(aemt) or attribute e-concept. In the implementation of an aemt in a form-
based browser (See Figure 43), ρ(O) is derived from the title of the
window, or the shape or position of the object editor. ρ(A) is usually the
label or prompt in front of the edit field for the value, but it could also be
the location of the field, if the user gets special training to remember this.

In the case the field is a relationship1- or relationshipN editor that
represents relational e-constellations, we derive from section 12.5.3 on
page 104 that if <ρ(O1),ρ(O2)>, is an 2-tuple of object groups, and ρ(R) is
a reference to an binary object relation, then the pair
<<ρ(O1),ρ(O2)>,ρ(R)> is called a relational e-message type (remt). In the
implementation of a remt in a form-based browser, ρ(O1) is derived in the
same way as ρ(O) for an aemt. ρ(R) is derived from the label or prompt in
front of the relationship editor which displays R.name1to2, or R.name2to1,
depending on if O1 represents R.class1 or R.class2. ρ(O2) is implicit in the
users knowledge of the domain model. Objects on the other side of
relationship R when viewed from class C1 can only be of class C2 (or any
of C2’s subclasses).

An e-message type can be codified by visual features such as colour, shape,
texture or relative location. This is particularly evident in the symbol
libraries of functional CAD-diagrams (Figure 11 on page 57). If the user
has knowledge of this graphical syntax, there is no need to textually spell
out the name of the attribute. Smart graphical encodings can save
considerable amounts of screen space and improve readability66. When a
user task requires fast access to any entity of information in a large

66.  Graphical encodings used in geographical maps are good examples of efficient
utilization of limited space. They use colour coding for entity types such as red for roads,
and blue for water. Red blobs of different shapes mark the existence of cities and represent
intervals for the value of the attribute “POPULATION”. Different sorts of coloured bar-
charts and diagrams are other good examples.
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quantity, a compact representation will save many user interaction
operations. The user might work with a particular kind of information
representation for several hundreds of hours and product models and future
knowledge-bases will contain large numbers of objects. Therefore some
initial effort on learning an efficient graphical encoding will yield benefits
in the long run.

FIGURE 43. Information entities in a form-based object editor. 
aemt=<ρ(Company),ρ(Company.name)> 
remt=<<ρ(Company),ρ(Drawing)>,ρ(company_drawings)>

18.2.6 Field editor implementation class (FE)

The field editor implementation class FE provides the mechanism for
displaying and modifying the attribute values and relational e-
constellations reflected in field-instances fe. FE’s are organized in class
hierarchies in the same way as OE’s and other user interface object classes.
Window system programming toolkits (e.g. Xt [Young 89][Rao 87] ET++
[Weinand et al. 88]) usually have a library of useful components for field
editor classes. These libraries implement the basic functionality for push-
buttons, sliders, edit-fields, list-boxes and so on. There are, of course, a
large number of commercial frameworks where some are included in
modern window-based operating systems that provide much of the
functionality presented here.

In addition to implementing graphical layout and user interaction, our FEs,
also provide an interface to the UI-KB layer shown in Figure 41, which
stores and retrieves attribute values from kbos and translates user
commands to operations on its relationships. This UISA functionality is
provided in higher abstract implementation classes. The knowledge
engineer selects an FE that suits the need for graphical layout and
interaction functionality. The UI-KB interface that adapts the FE-
functionality to work on objects from a particular domain model can be
generated from the domain model in the meta-database.

ρ(A)

ρ(O)

ρ(R)
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18.3 2D user interface support
In a knowledge base for engineering, we typically want to represent
complex hierarchical and network structures by 2-dimensional graphs. In
this case, we need to introduce two other types of user interface objects,
namely link editors and views.

18.3.1 Link Editor (le)

An link editor le represents a rec <<o1,o2>,R> by a graphical link between
two object-editors. This rec is typically implemented so that the two kbo’s
<o1, o2> that it connects have each other’s object identifiers stored in one
of their instance variables or in a local set- or collection-oriented abstract
data type that is referenced through the operations or specializations of the
operations presented in section 14.4 on page 121. A link must in most cases
be explicitly expressed in the user interface in the form of a le. This allows
the user to interact with the link even if it is not represented as a kbo in the
knowledge-base. The le can be manipulated and transforms the user’s
commands to the corresponding relationship operations on the underlying
kbo’s. 

Another task for link editors is to represent an information-rich relationship
between two classes that have been transformed into a class in the domain
model. (Recall the discussion in section 14.3 on page 119 and section 14.6
on page 126). The information represented by the link-editor is then stored
in its own kbo.

18.3.2 Link Editor implementation class (LE)

How a rec is visualized and how the operations can be expressed using, for
example, menus or drag-drop, is determined in the link editor
implementation class LE. LE specifies common properties and
functionality of all its link-instances le. Each unique link editor lei within a
view v must have a unique priority that allows a topological sort among the
links. This priority is used by a 2D view v to manage the spatial rendering
order. It may be a computationally derivable value or a value stored in one
of the objects <o1,o2> of the rec.

18.3.3 View (v)

A view is a special type of window in which object editors oe and
sometimes link editors le are displayed. A view-instance v is always
generated from one special root kbo. A view in some way visualizes the
environment of the root kbo, with respect to some relationship or
relationships. The window in Figure 36 on page 111 is an example of a 2D
view that displays the hierarchical relationship owner_owns. The layout
starts from the root kbo with ref_id “a” and name = “Article”.
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In a view, the spatial dimensions (x,y) should be assigned a semantics. In
Figure 36 the x-dimension expresses that an Article kbo represented by an
oe to the left is an owner of an Article to the right. The y-dimension is
sorted with owner membership as the first index, and the alphabetical value
of ref_id as the second.

An example of a very simple view is the sorted table shown in Figure 51 on
page 227. In the figure, each object editor oe contains two attribute editors
ae which identify their aemt by their spatial location in the x-dimension.
The y-dimension expresses an alphabetical sorting order by a symbolic
name.

The explicit assignment of semantics and sorting orders to the different
dimensions in the view help the user to more rapidly locate an oe of
interest. It also preserves the graphical structure of the view or its
“picture”. Pictures are easy to remember and if their structure does not
change too radically over time, the user can use them as mental memory
structures to remember facts or as support for recalling the access-path to
certain information during interactive browsing. See for instance
[Gärdenfors 89a][Gärdenfors 89b] for a deeper discussion on conceptual
spaces.

18.3.4 View implementation class (V)

A view implementation class V provides an algorithm for displaying some
relationship among kbos. Some two-dimensional views may require more
complicated graph-drawing algorithms. A common and useful 2D-view for
visualizing important properties of a plan is the PERT diagram (Program
Evaluation and Review Technique [Schaffer et al. 65]), see Figure 52 on
page 228. This view expresses the ordering relation and time requirements
for different activities. Algorithms for drawing such graphs automatically
are known [Battista et al. 89]. The implementation of such algorithms are
typically stored as methods in abstract view-classes higher up in the view
implementation class hierarchy. A PERT diagram can be used to display a
level of the hierarchical network design activity graph in the benchmark
domain model.

There is a rich source of literature available on graph-drawing algorithms
[Eades&Tamassia 89]. However, not all drawing techniques are well-suited
for the human visual perception system [Hubel 88]. Care should be taken
when selecting one since some algorithms do not preserve any spatial
sorting order. A minor change among the relations in the knowledge-base
may cause a drastic change in the graphical layout. This will disturb the
user’s possibilities to acquire a mental model of the KB.

As mentioned, there are many benefits when organizing view
implementation classes into a class-hierarchy that inherits methods and
functionality. The basic drawing algorithm for a certain type of view can be
implemented higher up in the hierarchy and specializations, such as
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choosing OE’s and LE’s, are added in the subclasses. The knowledge
engineer only has to code the very small parts that are unique for his
particular application view.
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19 The User Interface Managers

The user interface display manager (DM), coordinates the refreshing of
windows. This is necessary when the e-constellations represented in the
product model are changed and need to be represented with new e-
messages which transfer the new state of the model in the KB correctly to
the user. Section 19.1 describes the workings of the display manager.

The selection manager (SM), is a global resource from which user interface
objects can request data and status information about the current selection.
A well-defined protocol for selection management is essential to make this
type of interface operational. The system operates according to the object-
action paradigm. Legal operations and operations enabled on menus may
depend on what is currently selected. Section 19.2 explains the workings of
the selection manager together with formulas and description of tests how
to calibrate statistics for selection times.

The clipboard manager (CM) supports copy and paste of complex object
structures.

The user interface transaction manager (TM) is responsible for logging user
interactions and triggering refreshes coordinated by the display manager. In
advanced user interface implementations, it is also responsible for the
undo-facility. The transaction manager is described in Section 19.4.

19.1 The display manager
The display manager has some additional duties compared to traditional
display managers. It must preserve a correct view of the KB on the screen.
One situation might be where there are n windows on the screen that
display the same kbo. If the user modifies a kbo represented in the window
w1, the other windows w2 to wn have to be refreshed or at least marked as
invalid if an automatic refresh would induce too much overhead. The DM
keeps track of which object editors represent which kbos, so a targeted
refresh can be performed. This is done by maintaining the kbo-oe
relationship in a fast global data structure so that DM can access it by
indexing on kbo and retrieve all object editors that need to be refreshed.

Some other responsibilities for the display manager are:

1) Window editor resource management, finding the fastest way to provide
an editor for a kbo for which editing is requested. This can be done by
maintaining a cache of hidden editors or reusing existing open ones.



160 Development Environments for Complex Product Models. V2

2) Save and load of display states or working contexts, including window
placement for performing a certain task.

3) Calculation of visible e-messages from a snapshot of a window
placement configuration, and “accessibility” measures given a particular
task.

4) Coordination for the selection marking of selected kbo’s that are
represented in several windows.

19.2 The selection manager
The purpose of the selection manager is to enable the user to select and
refer to constituents of an elementary constellation before issuing the
operation that either assembles, modifies or disassembles it.

Elementary constellations are either attribute e-constellations <o,<A,v>>
or binary relational e-constellations <<o1,o2>,R>. The operations are
performed by selecting the appropriate objects o, and then issuing an
operation to a user interface object that represents an attribute- or
relationship e-constellation type.

The service of the selection manager is also useful for any command that
needs a set of parameters in the form of references to objects, see Table 39.

The selection manager (SM) cooperates with the display manager (DM) to
maintain a visual feedback of the current selection. When we have multiple
windows displaying the same kbo, the selection should be graphically
indicated in all the views. When the selection is cleared, the graphical
indications have to be removed. The mechanism for this is important for the
ease of performing operations on kbo’s and its implementation is rather
complicated. The UISA allows this function to be inherited and thereby
relieves the knowledge engineer from the burden of implementing it.

Table 23: Basic operations on uios that involve the selection manager.

operation
kbo

newValue
oldValue

UI
type

U
T

Operation description

setSelectionOwner
oid
-
-

Form
2D

- Clear any previous selections, and make the 
uio with its selected object the single owner 
of the selection.

addSelected
oid
-
-

Form
2D

- Add an object to the selection held by the 
selection manager.
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19.3 The clipboard manager
The purpose of the clipboard manager is to efficiently support copy and
paste operations of large and complex object structures. Some kbo’s may
own very large substructures and the clipboard manager must generate new
object identifiers for all objects in the substructure for each copy that is
pasted back into the KB. This requires knowledge of how the domain
model is structured and knowledge of which relationships should be broken
from a copy, which ones to maintain, and which ones to deep copy.

19.4 The transaction manager
The transaction manager is a global application resource that keeps track of
the begin, commit and rollback of operations issued through user interface
objects. It also manages the logging of information from these operations
for later statistical analysis.

removeSelected
oid
-
-

Form
2D

- Remove an object from the selection held by 
the selection manager.

clearSelections
oid
-
-

Form
2D

- Clear all selections held by the selection 
manager.

Table 24: Some useful Selection Manager methods.

Name Description

SM.getSelectionCollection() Return the kbo’s held by the current selection in an 
ordered collection.

SM.getSelectionSize() Return the size of the ordered collection of kbo’s 
that would be returned by 
getSelectionCollection().

SM.matchSelection(classColl) Match the selection against a the ordered 
collection of classes in classColl. Return ordered 
collection of kbo’s if the match was successful, 
else return nil.

operation
kbo

newValue
oldValue

UI
type

U
T

Operation description
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The reason for dividing interaction with a product model into distinct user
transactions is to avoid leaving the product model in an inconsistent state.
Some operations such as storing certification information for a substructure
should not be completed if not all information about the certification is
available. The completion of such a user transaction may move the
substructure into another state where, for instance, update operations are
inhibited.

Appendix C page 191 describes a set of operations on user interface objects
in detail. It also describes data to log from user sessions which can be used
for analysis. 

To conclude, experience with practical implementation of the user interface
software architecture has shown it valuable to factor out common
functionality from the user interface components and place it into a
display-, selection-, clipboard- and transaction manager.

This approach increases the functionality that can be provided directly in
an automatically generated user interface and decreases the size of the
source code generator scripts.
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20 Discussion

Efficient development environments for product modeling systems can
benefit from using knowledge developed in research programmes of KBS
for design, CASE, databases, object-oriented programming, user interfaces,
and to some extent cognitive psychology.

The value of this work is the integration of knowledge from these different
domains to a coherent whole that solves a practical industrial problem.

20.1 Prediction properties of the domain 
modeling language

To our knowledge, there is no theory published yet that enables prediction
of the performance of a generated browser user interface application from a
domain model, measured in average user interaction- and system response
times for various operations on instantiated object structures from an
object-oriented domain model. The reason is probably the complexity of
such a theory. To make such predictions for form-based and 2D user
interface configurations, prediction functions for average completion times
for more than 100 different types of operations (listed in Appendix C) must
be included. These prediction functions need statistics from the population
of the database to be able to compute realistic estimates. The average time
to select an object in a 2D view showing an article structure (Figure 36 on
page 111) will, for instance, be different if only a small fraction of the
average number of objects is visible, so that scrolling must be applied.
Theory for calculating user interaction times for a well-defined sequence of
actions is available in the model human processor (Appendix D page 215).

Theory for calculating statistics of the population of a database
implementation of an ER-model is given in the paper “A Temporal
Statistical Model for Entity-Relationship Schemas” presented by J-L
Hainaut, at ER11 [Hainaut 92]. 

It presents a statistical treatment of what can be derived from an ER-model
given some basic statistics on the populations of its concepts Entity type,
Group, Attribute, Value Domain, Role, Relationship Type, and Spaces. 

The paper provides 40 equations that describe the relations between
populations of instances of the above-mentioned concepts for the ER-
model. (EQ 17) - (EQ 21) in chapter 14 describe similar relations for the
conceptual framework in this thesis. It should be possible to extend the
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proposed framework to a similar level of detail based on the work done by
Hainaut.

The strength of our model compared to the ER-model is the ability to
calculate an exact information quantity for an instantiated model, since the
domain model itself implicitly specifies to which object a relational e-
constellation belongs. To perform a similar calculation for the ER-model,
additional design decisions must be made.

Another advantage of our model is that some implementation-oriented
design decisions are already implicit in the modeling language, which
simplifies the implementation of source code generators.

20.2 Other object-oriented domain modeling 
languages

On the design level, the concepts of Object-Oriented modeling of static
instance structures is fairly well understood today. There are many
commercial tools that provide support for object-modeling and design.
Many of these are based on the methods that were made popular through
[Coad&Yourdon 90], [Rumbaugh 91] and [Jacobsson et al. 92].

Another approach which provides some different abstraction techniques on
the design level, oriented towards the behavior of object systems, is the
OORAM-method [Reenskaug 96]. It uses collaboration views for roles that
objects take, that declare message paths between the roles. A message path
enters a role through a port that specifies the message protocol that the role
has with the connected role in the specific collaboration view. What
represents the concept of a class in the other models is a synthesis of
attributes and message protocols from the union of all roles in all
collaboration views that a certain type of object may play. This approach
seems to be more orthogonal with respect to reuse of collaboration patterns.

EXPRESS has an object-based flavour and is a fundamental part of the STEP
standard ISO 10303, "Product Data Representation and Exchange" [STEP 92].
EXPRESS models have a similar expressive power for static object
modeling as our domain modeling language [STEP 92a]. It is
straightforward to generate EXPRESS code from our meta-database that
contains unique functions for each entity type for automatic information
quantity calculation.

Interface definitions for our domain models can be generated in the
interface definition language (IDL) for CORBA. In addition, the logic for
the basic object manipulation functionality can be generated automatically.

The ODMG-93 standard [Cattell et al. 96] specifies the object definition
language (ODL) which has a simple mapping to the concepts defined in
chapter 14. One difference is that in ODL the abstract data type
implementation for the relationship must be specified. In our domain
modeling language the selection of ADT-implementation is left to the
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source code generators, but it is easy to augment the relationship objects in
the meta-database with an attribute that gives a hint to the source code
generator what implementation to select. It should be straightforward to
write source code generators that generate information quantity calculation
functions for object-oriented databases that implement the ODMG-93
standard.

AMOS (Active Mediator Object System) is the multi-database research
platform at the Engineering Database and Systems Laboratory
[FahlRischSköld 93]. The AMOS data model is functional and object-
oriented. It is based on the IRIS data model [Fishman et al. 89], which in
turn is based on the functional data model of DAPLEX [Shipman 81].

There are three basic constructs in the AMOS data model: objects, types
and functions. Functions can be either stored, derived or external. Our
domain modeling primitives have mappings to AMOS types, stored and
derived functions. Classes are mapped to types in a type hierarchy which
inherit functions that implement class attributes (Table 7 on page 114) and
class operations (Table 8). Attributes and relationships are implemented
using functions. In AMOS, functions are first-class objects which can have
stored and derived functions themselves. Thus attribute attributes (Table 10
on page 117), attribute operations (Table 12) and relationship attributes
(Table 10) are mapped to functions of the built in type function. The
corresponding AMOS type for each class in a domain model is provided
with a set of functions that implement the class instance operations
(Table 9). Each attribute in a domain model is mapped to a set of functions
on its corresponding type which provides the attribute operations
(Table 12) on objects of that type. Relationships are mapped to a set of
stored and derived functions that implement the basic relationship
operations (Tables 14,15 on pages 121,124).

From what we know about the emerging SQL3-standard, domain models
implemented according to our meta-database design will be straightforward
to implement.

20.3 Other work on user interfaces
To my knowledge little theoretical work has been done on user interfaces
that are tightly integrated with the application domain model and perform
quantifiable predictions on user interface performance.

Common interface support systems and user interface development toolkits
(e.g. [Schaufler 88][Rao 87]) are too isolated from the application to the
support rapid developments of KBS-applications. They provide little or no
support for representing complex structures in the form of graphs. They
have all kinds of functionality for developing an attractive graphical layout,
but what is really needed for KBS development is support for an efficient
information transfer in the final interface. 
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At the UISA-level, there are numerous approaches for visualizing the
internal workings of an object-oriented software system. One of the well-
known approaches is the Smalltalk Model-View-Controller (MVC), class
hierarchy framework [Krasner&Pope 88]. In short, it divides the
responsibility for a user interface into three abstract superclasses (Model,
View and Controller) which then can be specialized for the current
application:

The model represents the data structure of the application. In our
perspective we could compare it with a static instance structure in the KB.

The view handles all graphical tasks. It requests data from the model and
displays it. A view can contain a hierarchy of subviews. The view handles
clipping of graphical objects at window edges and transformations of the
subviews. The views v in our architecture are mainly intended to display
object editors oe that reflect KB-instances and their instantiated
relationships.

The controller takes care of the user input events and transforms them into
messages to both the view and the model. 

In our architecture there are no controllers. The windows w or views v take
care of the conversion of user interaction events from the underlying
window system and convert them to messages M. The coordinates of mouse
events and the current dialog focus determines which UI-object will receive
the message.

There are many commercial application frameworks that implement much
of the functionality of an UISA. To be able to compare them one has to
study the commercial products in detail.

The main difference between our approach and others we have studied, is
that ours makes specific assumptions about the domain model in the sense
that the UI implementation is generated from a domain model. This allows
the UI to work on any instance-configuration that adheres to the domain
model.

The view instances v in our UISA are automatically generated from the
instance structure in the KB or PMDB, using a layout algorithm. Other
object-oriented approaches often assume a more static instance structure of
the application and the graphical layout of the windows has to be done by
hand or possibly with the help of a UIMS.

The purpose of the UI is to provide an isomorphic picture of the KB. When
the KB changes, its appearance in the UI will change accordingly. This can
only be obtained if the UI is generated from the KB at both schema level
(meta-model level) and instantiation level (a particular model).

The user or knowledge engineer is relieved from time-consuming non-
productive layout tasks. Considering the large amount of redundant
graphical information that otherwise would have to be maintained and the
potential size of future knowledge-bases, this is an important property.
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Many approaches to object-oriented user interface development systems,
seem to have technology push as a major source of inspiration. As new
features are possible to implement they become used. Our approach,
besides being influence by object-oriented programming systems, object-
oriented databases demands and window systems is largely inspired by
cognitive psychology [Card et al. 83], and what is known about the human
visual system [Hubel 88]. It should be possible to utilize the large parallel
information processing and memory capabilities of human vision in a better
way if the user interfaces are adapted according to what is known about it.
The idea is that as much as possible of the graphical contents in views of
the KB should carry semantically meaningful information of interest to the
user, i.e. the graphical layout should reflect some semantic information that
is valuable to recall. Our hypothesis is that the possibility to recall facts in
the form of pictures will significantly increase the knowledge engineers’
and users’ abilities to use and reuse the contents of a large toolbox or
knowledge-base. However, this requires that the graphical syntax and its
corresponding user interaction facilities are tuned towards the optimal for
the human information processing system.

Appendix D describes a model of a human information processor that can
be used for theoretical analysis.

The UISA described is a synthesis of theory and practically useful
techniques which are necessary for meeting the requirements of future user
interface support systems for interactive development of domain model-
based KBS/PMS. The division of the responsibility for generating views
among different classes decreases the coupling between necessary software
components and facilitates the implementation.

20.4 Meta-CASE-tools
A meta-CASE tool is a tool for development of CASE-tools. Using the
terminology of this thesis, a CASE-tool can be seen as a product modeling
system for software. The OOCASE-tool [Johansson 93] and the meta-
database was, for instance, used for the development of the meta-database
itself.

Scandinavia has a long tradition in information systems modelling and the
concept of a meta-CASE-tool emerged at SYSLAB67 around 1983 from the
need to experiment with tools for different methodologies for system
design [Bubenko 92]. SYSLAB developed a meta-tool, RAMATIC. This
tool was later further developed by the Swedish Institute for Systems
Development (SISU).

The need to find objective evaluation methods for comparing various
CASE-supported graphical design techniques and development

67. Systems Development and Artificial Intelligence Laboratory, Department of Computer
and System Sciences, Stockholm University
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methodologies has lead to the development of metrics on domain models
for CASE-tools [Rossi et al. 95].

20.5 Future work
There are several research questions that need further work.

* Improved source code generators for forms that contain a large
number of fields.

* Source code generators for graphical 2D and 3D user interfaces.

* Development of a mathematical framework for computing usage
statistics from logged user interaction sessions, which provide
decision support for how to improve the user interface of a
prototype system.

* Development of the language for task descriptions so that
estimations of usage statistics can be entered and used for
improved automatic generation of user interface configurations.

* Development of the benchmark domain model to cover more
design features, especially for the task descriptions.

* Development of a theory that provides an evaluation function of
user interface configurations for applications that have many user
roles and a large number of task descriptions.
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21 Conclusions

The conclusion from practical experience with developing and maintaining
a product modeling system is that the development and long-term
maintenance effort for a product modeling system is quite demanding for
an engineering company that has development of a specialized complex
non-software product as its main business goal.

The overall development and maintenance effort can be decreased if it is
divided in an intelligent way between the product developing engineering
companies, specialized PMS-development consultant companies that work
as mentors during the development of the system, software engineering
companies and suppliers of CAD-software and core software technology
such as compilers, operating systems and database engines.

This division of effort must be done in such a way that clear borders of
responsibility are provided between different areas of expertise. The
borders must be designed and standardized so that many companies can be
formed around these areas of expertise and have a large enough market to
be profitable and long-lasting.

The architectural framework suggested in the thesis is believed to be a
major improvement compared to the current state of the art. The design of
the development platform enables product developing engineering
companies and specialized PMS-development consultant companies to
focus on the development of a valid domain model for the PMS-
application.

Source code generators for different database and user interface platforms
can be developed independently by different software engineering
companies and tested and compared using a standardized validation test on
a standardized benchmark domain model. Outlines of what to include in
such a standard are given in Chapter 14, section 16.5 and Appendix C.

If the design of the meta-database can be standardized and the standard is
accepted by software industry, this would have an accelerating effect on the
development of product modeling systems. In the same way that
standardized programming languages and the development of compiler
technology relieved application developers from knowing the details of
assembly programming for a particular processor, this new level of
abstraction will relieve the domain experts and system developers from
having to deal with many of the implementation details of a particular
database, CAD-system or window operating system.
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Appendix A The Benchmark 
Domain Model

An overview of the suggested benchmark domain model is given in chapter
13. This appendix provides the following additional documentation :

Table 25: List of documentation of the benchmark domain model.

Documentation type
Page 
no

Graphical overview of the benchmark domain model. Figure 44 183

Class list Table 26 184

Relationship list Table 27 185

Attribute list Table 28 186
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FIGURE 44. The benchmark domain model.



184 Development Environments for Complex Product Models. V2

Table 26: Classes from the benchmark domain model.

Name Pfx SuperClass Definition

Article ar QualitySecured 
Object

An article specifies a single part 
or an assembly of other articles. 
Other articles may either be 
owned directly by the article, or 
included from assembly 
structures owned by other 
articles.

C c0 QualitySecured 
Object

Abstract/instantiable superclass 
for the class hierarchy that 
inherits the product_features 
relationship.

C1 c1 C First instantiable leaf class C1 
in the subclass hierarchy of C.

C2 c2 C Abstract/instantiable class.

C21 ca C2 Instantiable leaf class.

C22 cb C2 Instantiable leaf class.

C3 c3 C Abstract/instantiable class.

C31 cc C3 Abstract/instantiable class.

C311 cd C31 Instantiable leaf class.

C32 ce C3 Abstract/instantiable class.

C321 cf C32 Instantiable leaf class.

C322 cg C32 Instantiable leaf class.

C33 ch C3 Abstract/instantiable class.

C331 ci C33 Instantiable leaf class.

C332 cj C33 Instantiable leaf class.

C333 ck C33 Instantiable leaf class.

Company co DesignationObject A company.
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DatabaseObject db (none) DatabaseObject is the 
superclass of all classes that are 
stored in the database. It holds a 
globally unique object identifier 
(lowId,highId) that serves as a 
key.

Deliverable dl DesignationObject Defines a deliverable that is 
produced by a DesignActivity.

Department de DesignationObject A department within the 
company that is responsible for 
a set of products.

DesignActivity da DesignationObject Specifies an activity that may 
take a set of input deliverables 
and produce a set of output 
deliverables.

DesignationObject do DatabaseObject Abstract class for objects with a 
human readable designation.

Drawing dr QualitySecured 
Object

A drawing that depicts a set of 
articles.

IncludedArticle ia DatabaseObject Relates the inclusion of an 
article in the assembly of 
another article.

Product pr QualitySecured 
Object

One of several products that are 
designed within a department.

ProductData pd DesignationObject Class with attributes of the 
basic types of CORBA IDL.

QualitySecured 
Object

qs DesignationObject Defines objects that need 
quality assurance.

Table 27: Relationships from the benchmark domain model.

Relationship type
owns
1to2

Definition

company_departments 1-N T Holds departments related to a company.

company_drawings 1-N T A master index for the drawings within a 
company.

Table 26: Classes from the benchmark domain model.

Name Pfx SuperClass Definition
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consumer_inputs 1-N F Defines inputs consumed by 
DesignActivities.

deliverable_articles 1-N F Defines articles within a deliverable.

deliverable_drawings 1-N F Defined drawings within a deliverable.

department_products 1-N T Holds products owned by a department.

drawing_articles 1-N F Relates a set of articles to a drawing.

include_includedIn 1-N F Relates articles that include an article.

owner_includes 1-N T Holds included article reference objects 
for an article.

owner_owns 1-N T Holds articles that are owned by other 
articles.

producer_outputs 1-N T Specifies deliverables produced by design 
activities.

product_features 1-N T Relationship from product to class C, 
which is inherited to C’s subclasses.

product_mainActivity 1-1 T Relates one main activity to a product.

product_mainArticle 1-1 T Relates one main article to a product.

product_productData 1-N T Holds fictitious product data for a 
product.

superActivity_
subActivities

1-N T Holds a sets of subactivities that make up 
a super activity.

Table 28: Attributes of the benchmark domain model.

Name ClassName Type Definition

aBoolean ProductData boolean CORBA IDL basic typedef 
boolean.

aC C boolean An attribute of class C on the 4th 
inheritance level.

Table 27: Relationships from the benchmark domain model.

Relationship type
owns
1to2

Definition
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aC1 C1 boolean Attribute of class C1 on the 5th 
inheritance level.

aC2 C2 boolean Attribute on the second subclass 
of class C.

aC21 C21 boolean Attribute of class C21 on the 6th 
inheritance level.

aC22 C22 boolean Attribute of class C22.

aC3 C3 boolean Attribute of class C3.

aC31 C31 boolean Attribute of class C31.

aC311 C311 boolean Attribute of class C311, on the 7th 
inheritance level.

aC32 C32 boolean Attribute of class C32.

aC321 C321 boolean Attribute of class C321.

aC322 C322 boolean Attribute of class C322.

aC33 C33 boolean Attribute of class C33.

aC331 C331 boolean Attribute of class C331.

aC332 C332 boolean Attribute of class C332.

aC333 C333 boolean Attribute of class C333.

aChar ProductData char CORBA IDL basic typedef char.

aDouble ProductData double CORBA IDL basic typedef 
double.

aFloat ProductData float CORBA IDL basic typedef float.

aLong ProductData long CORBA IDL basic typedef long.

aShort ProductData short CORBA IDL basic typedef short.

aString ProductData string<255> CORBA IDL basic typedef 
String.

anEnum ProductData short CORBA IDL basic typedef enum.

anULong ProductData unsigned 
long

CORBA IDL basic typedef 
unsigned long.

Table 28: Attributes of the benchmark domain model.

Name ClassName Type Definition
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anUShort ProductData unsigned 
short

CORBA IDL basic typedef 
unsigned short.

approved_by QualitySecured
Object

string<8> Login name in database for 
employee who has approved this 
information for manufacturing (or 
purchase).

checked_by QualitySecured
Object

string<8> Login name in database for 
designer who has checked the 
information recorded in this 
database object.

created_by DatabaseObject string<8> Login name in database for the 
designer who originally created 
this object. The date for this is 
specified by the attribute 
dtAdded.

highId DatabaseObject long Higher 32-bit part of a 64-bit 
globally unique object identifier. 
Used for uniquely identifying a 
certain database.

lowId DatabaseObject long Lower 32-bit part of a 64-bit 
globally unique object identifier. 
Used for uniquely identifying 
objects within the same database.

modified_by DatabaseObject string<8> Login name in database for 
designer who made the latest 
modification to this information. 
The date for this is indicated by 
the attribute dtModified.

name Designation 
Object

string <40> A descriptive name for the object.

quantity Article string<8> An integer that specifies the 
quantity of this article that are 
parts of its owner.

quantity IncludedArticle string<8> An integer that specifies the 
quantity of one article that is 
included in another article.

Table 28: Attributes of the benchmark domain model.

Name ClassName Type Definition
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ref_id Designation 
Object

string<8> Fast human readable reference 
identifier. Could serve as 
candidate key in a relational 
database.

release QualitySecured
Object

string<4> Release identification. Identifies a 
release of the information in this 
databaseobject. Release 0 is the 
working release.

scheduled_ 
duration

DesignActivity long Scheduled duration of the activity.

status QualitySecured
Object

string<3> Status of the information given, 
according to a company-specific 
standard.

Table 28: Attributes of the benchmark domain model.

Name ClassName Type Definition
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Appendix B Benchmark Application 
Task Descriptions

This appendix just sketches how the benchmark task descriptions can be
defined. The detailed work of developing a working benchmark must be
made by a standardisation organization or software consortium.

ProcessModel benchmark;
  Role ExecutiveDirector;
  Role ChiefDesigner;
  Role ProjectManager;
  Role Designer;
...
Task ArticleChecking

performed by ChiefDesigner;

    Transactions
      Begin CompletenessCheck

InfoSet
          Path Company.departments(1)-> Department.products(1)-> 

Product.mainArticle(1)-> 
{ Article.owns(*)-> }*
Article 

Read Company.name(1) 1.0
          Read Department.ref_id(1) 1.0

Read Product.ref_id(1)  1.0
          Read Product.name(1)  1.0

{ Read Article.ref_id(*) 1.0
Read Article.name(*)  1.0
Read,Create,Update

Article.checked_by(*)  1.0
}*

EndInfoSet
      End

...
EndTransactions

EndTask

The “Transactions” statement includes a set of transactions that each
specifies a certain InfoSet. The infoset includes one or several Paths which
specify how the contents of the infoset are located. The path name has the
format [<Class>.<rXX>->]*<Class>. The default name of an aect role is
<Class>.<attributeName>(<rolename>) <importance_weight>. The role *
indicates that the role name is the number of the hierarchical nesting level.
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Appendix C User Interface Object 
Characteristics

Chapter 18 gave an introduction to the different types of user interface
objects that are used to implement the state of the user interface (Figure 41
on page 150). Chapter 19 described the display-, selection-, clipboard- and
transaction manager, which handle some important dynamic interaction
mechanisms between different user interface objects.

This appendix presents a suggested conceptual framework and terminology
that enable different user interface configurations to be evaluated and
compared using theoretical models. The framework has been implemented
for the benchmark application. 

An informal definition of a user interface configuration is: A set of window
types where each window type has predefined what kind of information it
can display and provide access to, and how. The user interface
configuration also states which window types may be used by which user
roles, and during which tasks.

To be able to make predictions of how a certain user interface configuration
will behave in various situations, we must know the operations available
for the kinds of user interface objects they may contain, and have some
statistics about average completion times for these operations.

Section C.1 "Information recorded in a log record"  describes a suggested
set of information to log for operations available on user interface objects.
Section C.2 describes special operations which the transaction manager
handles.

The rest of the sections describe operations and measurable statistics for
window types, object editor types, attribute editors, relationship1-, and
relationshipN editors. Most of them are average timings. The timing
parameters can be used for calculating average completion times for tasks
performed by a MHP (Model Human Processor) actor given a certain user
interface configuration.

C.1  Information recorded in a log record
After completing an operation issued by the user, a user interface object
sends a message to the transaction manager to log the operation.Table 29
shows the information recorded in a log record for the user interface
operations presented in Table 33 - Table 45.
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Log records from different applications and different domain models may
be stored in the same table in a relational database for various analyses.

Table 29: Recorded log record information for a user interface operation.

attribute name datatype Description

domainModel string Name of the domain model for the application from 
which the log record was generated.

application string The name of the application generating this domain 
model.

userId string Login identifier for user who made the operation.

sessionId long Unique identifier for the session which the log record 
was generated from.

transactionId long Unique identifier for the transaction within which the 
log record was generated.

timestamp long Integer timestamp when the log record was generated.

duration long Duration in milliseconds for completion of the logged 
operation.

windowId string Unique textual identifier within the session for the 
window in which the user made the logged operation.

uiObjectId string Unique textual identifier within the window, for the 
uio which processed the users command for the 
operation. The identifier includes the type and an 
instance identifier, such that log-entries from the 
same uio can be traced. Uios may be of any type 
presented in Appendix C.

operation string Name of the logged operation.

newValue string A new value that is specific for the uiObject and 
operation. See column 1 in the tables in Appendix C.

oldValue string A previous value that is specific for the uiObject and 
operation. See column 1 in the tables in Appendix C.

iqVisible long Information quantity made visible by this operation.

iqRead long Information quantity read during the operation.

iqCreated long Information quantity created by this operation.

iqDeleted long Information quantity deleted by this operation.
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The application attribute should include a version identifier, to be able to
distinguish logs recorded from different prototype versions.

The transaction manager is responsible for providing userId, sessionId,
transactionId and timestamp to the log record. It is also recommended to
channel all accesses to the global clock for calculating durations through
the transaction manager, where the clock can be guarded by a monitor and
thus the calls for timing information made strictly serialized.

iqVisible, iqRead, iqCreated, iqDeleted are only recorded for the operations
that are marked with (iqv),(iqr),(iqc),(iqd) in Table 33 - Table 45.

C.2  Logging begin and end of user transactions
The begin of a user transaction is defined to be when an e-message
presented in a window is modified through an operation, and not yet stored
in the KB. This occurs for instance when the user modifies a value in an
attribute editor on a form based window.

Definition : A window is said to be valid when the e-messages it presents have 

a direct 1-1 correspondence with the e-constellations in the KB.

A new transactionId is generated and a log entry that marks the begin of the
transaction is inserted automatically by the transaction manager the first
time it logs a modifying nonatomic operation from a user interface object in
a valid window. 

Table 30: Special operations generated by the transaction manager.

operation
kbo for uio
newValue
oldValue

U
T

Operation description

beginTran
oid
-
-

?
B

Inserted into the log by the transaction manager when it 
records the first ?B operation from an uio with a kbo 
that is not currently invoked in a user transaction. 
Generates a new transactionId and registers it for the 
oid of the kbo represented by the uio.

commitTran
oid
-
-

?
C

Inserted by the transaction manager when it records a 
?C operation from an uiobject that represents a kbo 
where the oid has a pending transaction.

rollbackTran
oid
-
-

?
R

Inserted by the transaction manager when it records a 
?R operation from an uiobject that represents a kbo 
where the oid has a pending transaction.
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Such modifying operations are marked by the flag ‘?B’ in the tables of
operations presented in Table 33 - Table 45. Log entries that are
automatically inserted by the transaction manager for ?B, ?C and ?R
operations are listed in Table 30.

The end of a user transaction is defined to be when the user gives a
command that invokes a ?C or ?R marked operation. The invocation may be
explicit by pressing a button, or implicit when the user has changed some
values on a form browser and tabs to an attribute editor in another object
editor.

The kbCreate-command on a 1-N relationship editor is an example of an
atomic operation marked B-C. (see Table 42 on page 208). It needs to
commit its changes immediately to the KB in order to refresh the
relationship editor correctly.

In an advanced graphical user interface, different e-messages representing
the same e-constellation can be visible on many parallel windows. If the
user has pending changes of the representation for the same e-constellation
in several windows, he/she must consciously be forced to decide which
update should be committed, and which one should be rolled back.

The situation often occurs when the user interleaves a started modification
activity with some browsing, and then forgets about the previous started
update.

In order to detect conflicting updates, the transaction manager keeps track
of the uio and kbo for all pending transactions. When a modifying (?B-
marked) uioperation is logged, it checks if there is another uio with a
pending transaction that represents the same kbo. If there is, a conflict has
been detected. There are several ways to resolve the conflict. 

1) Just to rollback the oldest initiated transaction, using a ?R
operation, such as uiRefresh on the uio containing the data.

2) Bring the window with the conflicting old transaction to the front
and inform the user that the changes in that window will be rolled
back.

3) Present both windows to the user, and ask which pending
transaction to rollback.

Conflicts must be resolved immediately when they are detected by using a
method like the ones presented above. Otherwise there is risk that the user
will overwrite later committed data with a store operation in a window
containing modified data based on an old copy of data from the database.

C.3  Window types 
Windows are a basic medium for display and interaction with information
on a workstation. Average task completion times depend severely on how
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different types of application related information are allocated to, and
handled by different types of windows. How the windows are used by the
user during the completion of a task may reveal significant information on
how a window type can be redesigned in order to improve task completion
time, and reduce the cognitive load on the user. 

Figure 42 on page 152 shows the object domain model for the state of the
user interface. A window type is a predefined configuration that specifies
the state which contains the layout of uios within the window when it is
opened. A window type may also be a view, where its state, represented by
object editors and links, depends on the structures within the knowledge
base.

Table 31 show a set of attributes for a window type. Table 33 shows a set of
basic operations to log for windows. 

Table 31: Window type attributes.

Name Description

name Class name for the window.

windowTypePrefix A 4-character prefix that uniquely identifies a certain 
window class within an application.

avgTimeOpen Average time to open the window in milliseconds.

avgTimeClose Average time to close the window in milliseconds.

avgTimeRefresh Average time to refresh the window in milliseconds.

avgTimeVisualize Average time in milliseconds to perform an operation that 
redraws the window. The operations included in this 
average time are listed in Table 31.

ratio Defines the maximum error in the statistical estimates 
above, ratio = dx/x, where dx is the maximum error in x.

targetSystemRange An integer that specifies an interval in which other target 
system implementations may have their average timings. 
The interval is between [x/tsr,x*tsr], where tsr = 
targetSystemRange.

Table 32: Window visualization operations.

 Window operations in Table 33 that count as visualisation operations.

uiOpen, uiMaximize, uiRestore, uiSize, uiBringToFront, uiRedraw, uiRefresh, 
uiSet
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Table 33: Basic operations to log for windows.

operation
kbo

newValue
oldValue

UI
type

U
T

Operation description

uiOpen (iqv)
oid
windowRect
-

Form
2D

- Create the internals of the window, open it 
and refresh the information.

uiMinimize
oid
iconRect
windowRect

Form
2D

- Change the window representation to an icon.

uiMaximize
oid
windowRect
prevWindowRect

Form
2D

- Enlarge the window to its maximum size.

uiRestore (iqv)
oid
windowRect
iconRect

Form
2D

- Change the window representation from icon 
to open. Refresh the information.

uiMove
oid
newWindowRect
oldWindowRect

Form
2D

- Move the window interactively, and redraw 
it.

uiSize (iqv,iqr)
oid
newWindowRect
oldWindowRect

Form
2D

- Change the window size interactively and 
refresh the window.

uiBringToFront
oid
windowRect
-

Form
2D

- Move the window to the front of the window 
stack and, redraw it if necessary.

uiSendToBack
oid
-
windowRect

Form
2D

- Send the window to the bottom of the 
window stack. Redraw other windows as 
necessary.

uiRedraw (iqv)
oid
windowRect
windowRect

Form
2D

- Redraw the window.
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uiRefresh (iqv,iqr)
oid
newWindowRect
oldWindowRect

Form
2D

?R Update the window with any changes in the 
database.

kbStore (iqc)
oid
windowRect
windowRect

Form ?C Store any changes on data presented in the 
window to the knowledge base.

uiSet (iqv,iqr)
newOid
newOid
oldOid

Form
2D

- Set the window to reflect the object held in 
the selection, if possible.

uiSetFrom
kbo
newUiObjectId
oldUiObjectId

Form
2D

- Set the window to reflect any object selected 
in the uio that owns the current selection.

uiSetLock
kbo

Form - Lock the window on its current kbo. Inhibits 
the kbEdit operation from using the editor for 
another kbo.

uiSetFree
kbo

Form - Free the window from its current kbo. The 
window is now a free resource for use during 
browsing.

uiCancel
oid
-
windowRect

Form ?R Close the window and ignore any unstored 
changes to data.

uiClose
oid
-
windowRect

Form
2D

Q
?C

Ask the user to store any unstored changes, 
then close the window and destroy its 
representations permanently.

Table 33: Basic operations to log for windows.

operation
kbo

newValue
oldValue

UI
type

U
T

Operation description
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C.4  Object editor types
An object editor type is a predefined configuration of owned attribute- and
relationship editors that define what subset of aect’s and rect’s within a
domain model that the oe will provide access to. The object editor type also
specifies the graphical layout of the attribute and relationship editors.

Object editors may be chained through relationship editors in such a way
that they reflect a browsing path from kbos of one class via a relationship to
kbos of another class, and so on.

In dynamic views, oe’s may be created dynamically, reflecting how related
kbo’s in the knowledge base are structured.

Table 34: Object Editor type attributes.

Name Description

name Class name for the object editor.

keyName Unique name for the object editor configuration 
within a certain window class.

avgTimeRefresh Average time to refresh the object editor in 
milliseconds.

avgTimeVisualize Average time in milliseconds to redraw the object 
editor.

isDynamic Flag set to true if the number of instances of this 
object editor type, within a window can vary 
dynamically during run time.

probabilityZeroCardinality Probability that there are no instances of this object 
editor type within the window.

avgCardinality Average number of dynamic object editors of this 
type within the window during runtime.

stdCardinality Standard deviation of the above measure.

ratio Defines the maximum error in the statistical estimates 
above, ratio = dx/x, where dx is the maximum error in 
x.

targetSystemRange An integer that specifies an interval in which other 
target system implementations may have their 
average timings. The interval is between [x/tsr,x*tsr], 
where tsr = targetSystemRange.
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Table 35: Basic operations to log for object editors.

operation
kbo

newValue
oldValue

UI
type

U
T

Operation description

kbRead (iqv,iqr)
oid
-
-

Form
2D

- Some object editors may only indicate the 
existence of an object. In those cases an 
explicit read command may be issued in 
order to quickly display object information 
on a temporary popup window.

kbCreate (iqv,iqc)
newOid
newOid
oldOid

Form B 
C

Create a new object instance and load it to 
the editor.

kbEdit
oid
editOid
-

Form
2D

- Open a default object-specific editor on the 
kbo represented by the object editor.

kbStore (iqc,iqd)
oid
-
-

Form ?
C

Store any pending changes made to data in 
owned attribute editors to the database.

kbDelete (iqd)
oid
-
deletedOid

Form
2D

B 
C

Delete the kbo represented by the object 
editor. In the 2D case, remove the object 
editor from the window.

uiRefresh (iqv,iqr)
kbo
-
-

Form
2D

? 
R

Update all owned editors with fresh data 
read from the KB.

uiClear
-
-
oldOid

Form - Clear the editor from its currently loaded 
kbo. Clears the attribute fields, so a new 
uiLoad pattern can be entered. 

uiLoad (iqv,iqr)
loadedOid
loadedOid
oldOid

Form - Load an object from the database that 
matches the pattern data entered in the 
attribute editors.
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uiChange (iqc,iqd)
oid
newRepr.
oldRepr.

2D ?
C

Change the graphical representation of the 
object editor. This changes the layout in the 
window, and maybe some data stored in the 
object that are represented in the layout. 
“Repr” is a textual representation for the 
layout.

uiSet (iqv,iqr)
newOid
newOid
oldOid

Form
2D

- Set the object editor to reflect the object 
held in the selection, if possible.

uiRemove
oid
-
oldRepr.

2D - Remove object editor from the window.

setSelectionOwner
oid
-
-

Form
2D

- Clear any previous selections, and make the 
object editor the single owner of the 
selection.

addSelected
oid
-
-

Form
2D

- Add the object to the selection held by the 
selection manager.

removeSelected
oid
-
-

Form
2D

- Remove the object from the selection held 
by the selection manager.

clearSelections
oid
-
-

Form
2D

- Clear all selections held by the selection 
manager.

kbCopy (iqr)
oid
copyOid 
-

Form
2D

B 
C

Copy the kbo in the object editor to the 
clipboard.

kbPaste(iqv,iqc,iqd)
oid
pasteOid
copyOid

Form
2D

B 
C

Paste the contents of the clipboard to the 
kbo represented by the object editor, if 
possible.

operation
kbo

newValue
oldValue

UI
type

U
T

Operation description
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C.5  Attribute editor
An attribute editor has a one-to-one mapping to an attribute e-message type
(aemt) in the domain model. Most of the statistical timing estimates for an
attribute editor are dependent on statistics that describe the attribute value.
Thus the statistical parameters for attribute editors are implemented as
methods that take the average value size in a convenient measure,
depending on the type of the value, as input parameter. For a string value
editor, the average value size is the number of characters.

Table 36: Attribute Editor attributes.

Name Description

className Class name for the attribute editor.

uiName Unique name for the attribute editor within an object 
editor configuration. Used for logging purposes.

avgInformationDensity A measure of information quantity or e-messages per 
100 square pixels.

ratio Defines the maximum error in the statistical estimates 
returned by the attribute editor methods in Table 37. 
ratio = dx/x, where dx is the maximum error in x.

targetSystemRange An integer that specifies an interval in which other 
target system implementations may have their 
average timings. The interval is between [x/tsr,x*tsr], 
where tsr = targetSystemRange.

Table 37: Attribute Editor methods.

Name Description

avgTimeRead(avgSize) Calculate an average time in milliseconds for a user to read 
and interpret a value given the average value size avgSize.

avgTimeCreate(avgSize) Calculate the average time in milliseconds for a user to 
create a value in this attribute editor, given the average 
value size avgSize.

avgTimeUpdate(avgSize) Calculate the average time in milliseconds for a user to 
update a value in this attribute editor, given the average 
size avgSize.

avgTimeDelete(avgSize) Calculate the average time to delete a value in this attribute 
editor, given the average value size avgSize.

avgTimeRefresh(avgSize) Average time to refresh the attribute editor in milliseconds 
given the average value size avgSize.
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avgTimeRead(avgSize) needs a comment. The model human processor
assumes 230 milliseconds for a saccadic eye movement. An explicit e-
messages that can be received in one eye fixation and requires no further
inference would probably take no more than 1/2 a second to read and
interpret. Some coding representation techniques may require extra mental
reasoning. Text containing more than 15-20 characters may need several
eye fixations to read. For attribute editors with complex value
representations, data has to be collected experimentally.

The average time to modify a value using a certain attribute editor is
probably most convenient to measure with experiments. Log functions can
be built into the attribute editors and a set of test data distributed over the
value size range generated. After a simple practical experiment, a function
returning a reasonable estimate can be found and implemented.

avgTimeRefresh(valueSize): System average widget refresh time in
milliseconds. This value is also easy to find out experimentally. The value
can for instance be measured by creating a form with 100 attribute editors
of the type holding data of valueSize, and time the refresh method.

Table 38: Basic operations to log for attribute editors.

operation
kbo for attribute

newValue
oldValue

UI
type

U
T

Operation description

vaRead (iqv,iqr)
oid
value
-

Form
2D

- Some attribute editors may only indicate 
the existence of a value. The value may 
be read by issuing an explicit read 
command.

vaVisit
oid
value
-

Form
2D

- Issued when the user temporarily enters 
the attribute editor, leaving the original 
value intact when exiting.

vaCreate (iqv,iqc)
oid
newValue
-

Form

2D

?
B

B-
C

Issued when the previous value carried no 
information. It may have had the value 
“undefined” or a “dummy” default value.

vaUpdate(iqv,iqc,iqd)
oid
newValue
oldValue

Form

2D

?
B
B-
C

Update the value in the attribute editor.
The 2D-case commits immediately.
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C.6  Relationship1Editor
A relationship1 editor is used for accessing a 1-1 relationship from both
sides, and a 1-N relationship from the class2 side. Figure 45 shows 4
examples of relationship1 editors labelled Product, Deliverable, Drawing
and Owner. These are all on the 2-side of their relationships, in the way
they are defined in the benchmark domain model. The Product
relationship1 editor is the only relationship1 editor that represents a 1-1
relationship. See the benchmark domain model in Figure 44 on page 183.

vaDelete (iqd)
oid
-
oldValue

Form

2D

?
B
B-
C

Set the value to “undefined” or to a non- 
information carrying default value.

kbStore (iqc)
oid
newValue
oldValue

Form ?
C

Explicitly store any changes on the value 
presented in the attribute editor to the 
knowledge base object.

uiRefresh (iqv,iqr)
oid
newValue
oldValue

Form
2D

?
R

Explicitly update the attribute editor with 
fresh data read from the database.

vaCopy (iqr)
oid
value
-

Form,
2D

B 
C

Copy the value of the attribute editor to 
the clipboard.

vaPaste(iqv,iqc,iqd)
oid
pastedValue
oldValue

Form,
2D

B 
C

Paste the contents of the clipboard to the 
attribute editor, if it contains a legal value.

operation
kbo for attribute

newValue
oldValue

UI
type

U
T

Operation description
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FIGURE 45. Window owning one object editor, 13 attribute editors, 4 
relationship1 editors and 3 relationshipN editors.

Table 39 shows some statistics for a relationship editor implementation
class and Table 40 the basic operations to log for a relationship1 editor.

Table 39: Relationship Editor implementation class attributes.

Name Description

className Class name for the attribute editor.

uiName Unique name for the attribute editor within a object 
editor configuration. Used for logging purposes.
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Table 40: Basic operations to log for relationship1 editors.

avgTimeRead Average read time in milliseconds. If no candidate 
key attribute value is presented in the relationship 
editor, the user may have to issue a command to bring 
up a popup-menu or subform that displays an 
identifiable value that can be read. It may sometimes 
be useful to trade read access time for screen space.

avgTimeCreate Average time to issue a create command plus average 
system response and refresh time in milliseconds.

avgTimeAdd Average time to issue add command plus the average 
system response and refresh time in milliseconds.

avgTimeRemove Average time to issue remove command plus average 
system response and refresh time in milliseconds.

avgTimeDelete Average time to issue delete command plus average 
system response and refresh time in milliseconds.

avgTimeRefresh Average system refresh time after a change in the 
represented relational e-constellation or the 
underlying object within the product model.

avgInformationDensity A measure of information quantity or e-messages per 
100 square pixels.

ratio Defines the maximum error in the statistical estimates 
above, ratio = dx/x, where dx is the maximum error in 
x.

targetSystemRange An integer that specifies an interval in which other 
target system implementations may have their 
average timings. The interval is between [x/tsr,x*tsr], 
where tsr = targetSystemRange.

operation
kbo in relationship

newValue
oldValue

UI
type

U
T

Operation description

kbRead (iqv,iqr)
oid
readOid
-

Form
2D

- Logged during read operations. Generated 
when the user actively issues a read 
command that displays further information 
about the related object.

Table 39: Relationship Editor implementation class attributes.

Name Description
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kbEdit
oid
editOid
-

Form
2D

- Provide a default editor for the related 
object.

kbCreate (iqv,iqc)
oid
createdOid
-

Form
2D

B-
C

Create a new related object and add it to the 
relationship, if allowed by the cardinality 
constraints.

kbAdd (iqv,iqc)
oid
addedOid
-

Form
2D

B-
C

Add the object in the current selection to the 
relationship, if possible.

kbRemove (iqd)
oid
-
removedOid

Form
2D

B-
C

Remove an object from the relationship, if 
there is one.

kbDelete (iqd)
oid
-
deletedOid

Form
2D

B-
C

Remove the related object from the 
relationship and delete it, if there is one.

uiRefresh (iqv,iqr)
oid
refreshOid
-

Form
2D

- Explicitly update the relationship editor 
with fresh data read from the database.

setSelectionOwner
oid
selectionOwnerOid
-

Form
2D

- Clear any previous selections, and make the 
object editor the single owner of the 
selection.

addSelected
oid
addedOid
-

Form
2D

- Add the object on the other side of the 
relationship to the selection held by the 
selection manager, if there is one.

removeSelected
oid
-
removedOid

Form
2D

- Remove the object from the selection held 
by the selection manager.

operation
kbo in relationship

newValue
oldValue

UI
type

U
T

Operation description
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C.7  RelationshipNEditor
A relationshipN editor is used for accessing the 1 side of 1-N Relationships
and both sides of M-N Relationships. A relationshipN editor has a one-to-
one mapping to a set of relational e-constellations represented by the same
e-message type. A relationshipN editor implementation class has the same
attributes as a relationship1 editor implementation class (see Table 39).

Table 41 shows a method for estimating average search time.

clearSelections
oid
-
-

Form
2D

- Clear all selections held by the selection 
manager.

kbCopy (iqr)
oid
copyOid
originalOid

Form
2D

B 
C

Copy the object referred by the relationship 
editor to the clipboard.

kbPaste (iqv,iqc)
oid
newOid
copyOid

Form
2D

B 
C

Add the copy in the clipboard to the 
relationship, if possible.

Table 41: RelationshipN Editor implementation class methods.

Name Description

avgTimeSearch(avgCardinality) Average time to search for a special e-message in 
milliseconds, given that the user will recognize a 
supplied reference message when it is visually 
located, and the average number of e-messages 
displayed are avgCardinality.

avgVisibleRatio(avgCardinality) Average percentage of e-constellations in the 
relationship that are visible within the 
relationship editor, given the average cardinality 
of N.

operation
kbo in relationship

newValue
oldValue

UI
type

U
T

Operation description
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Table 42: Basic operations to log for relationshipN editors.

operation
kbo in relationship

newValue
oldValue

UI
type

U
T

Operation description

kbRead (iqv,iqr)
oid
-
-

Form
2D

- Logged during read operations. Generated 
when the user scrolls a list box, or actively 
issues a read command that displays further 
information about the related object.

kbEdit
oid
-
-

Form
2D

- Provide an editor for the selected related 
object.

kbCreate (iqv,iqc)
oid
createdOid
-

Form
2D

B-
C

Create a new related object and add it to the 
relationship.

kbAdd (iqv,iqc)
oid
addedOid
-

Form
2D

B-
C

Add the object in the current selection to the 
relationship, if possible.

kbRemove (iqd)
oid
-
removedOid

Form
2D

B-
C

Remove a selected object from the 
relationship. 

kbDelete (iqd)
oid
-
deletedOid

Form
2D

B-
C

Remove the selected object from the 
relationship and delete it.

uiRefresh (iqv,iqr)
oid
-
-

Form
2D

- Explicitly update the relationship editor 
with fresh data read from the database.

setSelectionOwner
oid
selectionOwnerOid
-

Form
2D

- Clear any previous selections, and make the 
object editor the single owner of the 
selection.

addSelected
oid
addedOid
-

Form
2D

- Add the object to the selection held by the 
selection manager.
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C.8  Relationship and object link editors
Link editors were introduced in section 18.3.1 on page 156. A link editor is
drawn as a graphical link between to object-editors. There are two types of
link editors. Relationship link editors represents a rec <<o1,o2>,r>. Object
link editors represent an information rich relationship between two objects

removeSelected
oid
-
removedOid

Form
2D

- Remove the object from the selection held 
by the selection manager.

clearSelections
oid
-
-

Form
2D

- Clear all selections held by the selection 
manager.

kbCopy (iqr)
oid
copyOid/oidSet
originalOid/oidSet

Form
2D

B 
C

Copy selected objects in the relationship 
editor to the clipboard.

kbPaste (iqv,iqc,iqd)
oid
pasteOid/oidSet
copyOid/oidSet

Form
2D

B 
C

Add the copies in the clipboard to the 
relationship if possible.

uiExpandN (iqv,iqr)
oid
-
-

2D - Expand the contents of the relationship into 
the 2D view by adding object-editors for all 
its related objects.

uiShrinkN(iqv,iqr)
oid
-
-

2D - Shrink the contents of the relationship from 
the 2D-view by removing all object-editors 
for its related objects.

uiExpand1 (iqv,iqr)
oid
addedOid
-

2D - Expand the contents of the relationship into 
the 2D view by adding an object-editor for 
the object with oid.

uiShrink1 (iqv,iqr)
oid
-
removedOid

2D - Shrink the contents of the relationship from 
the 2D-view by removing the object-editor 
for oid.

operation
kbo in relationship

newValue
oldValue

UI
type

U
T

Operation description
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which is stored in its own kbo. 

In some cases it is useful to have the positions of object editors and link
editors explicitly stored in the knowledge base. This is, for instance, the
case when storing structural views of product models, such as the one
presented in Figure 47 on page 224. In this case, a kbo that stores the
graphical information for a link editor are called link kbo.

Table 43 shows the basic operations to log for relationship link editors.
Note that the selection mechanism behaves a little differently from other
uio’s which have a direct one-to-one mapping to one kbo. A relationship
link editor for a rec always represents both its objects, and the selection
manager returns both these objects when the le is in the current selection.

A link editor is created with commands in its view.

Table 43: Basic operations to log for relationship link editors.

operation
kbo

newValue
oldValue

UI
type

U
T

Operation description

uiChange(iqv,iqc,iqd)
oid
newRepresentation
oldRepresentation

2D B
C

Change the graphical representation of the 
link editor. This changes the layout of the 
view, and perhaps some data stored in the 
link-kbo.

kbRemove (iqv,iqd)
oid1
-
oid2

2D B 
C

Remove the relationship between its two 
objects <oid1,oid2> from the database and 
its link editor from the user interface, and 
any associated link-kbo.

uiRefresh (iqv,iqr)
oid1
-
oid2

2D ?
R

Update label and layout of the link editor 
with fresh data read from the database.

uiRemove
oid1
-
oid2

2D - Remove a link editor from the window.

setSelectionOwner
oid1
oid2
-

2D - Clear any previous selections, and make the 
link editor the single owner of the selection.

addSelected
oid1
oid2
-

2D - Add the link object to the selection held by 
the selection manager.
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Table 44: Basic operations to log for object link editors.

removeSelected
oid1
-
oid2

2D - Remove the link object from the selection 
held by the selection manager.

clearSelections
oid1
-
oid2

2D - Clear all selections held by the selection 
manager.

operation
kbo

newValue
oldValue

UI
type

U
T

Operation description

kbRead (iqv,iqr)
oid
-
-

2D - Some link editors may only indicate the 
existence of a link object. In those cases an 
explicit read can display information in a 
temporary popup window.

kbCreate (iqv,iqc)
newOid
-
-

2D B 
C

Create a new link kbo, and add a link editor 
for it to the window.

uiChange(iqv,iqc,iqd)
oid
newRepresentation
oldRepresentation

2D B
C

Change the graphical representation of the 
link editor. This changes the layout of the 
view, and maybe some data stored in the 
link-kbo.

kbEdit
oid
-
-

2D - Provide a default editor for the represented 
kbo.

kbDelete (iqv,iqd)
oid
-
-

2D B 
C

Delete the kbo from the database and its 
link editor from the user interface.

operation
kbo

newValue
oldValue

UI
type

U
T

Operation description
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uiRefresh (iqv,iqr)
oid
-
-

2D ?
R

Update label and layout of the link editor 
with fresh data read from the database.

uiAdd (iqv,iqr)
addedOid
-
-

2D - Add a new link editor to the window for a 
selected link object.

uiSet (iqv,iqr)
newOid
newOid
oldOid

2D - Set the link editor to reflect the link object 
with oid, if possible.

uiRemove
oid
-
-

2D - Remove a link editor from the window.

setSelectionOwner
oid
-
-

2D - Clear any previous selections, and make the 
link editor the single owner of the selection.

addSelected
oid
-
-

2D - Add the link object to the selection held by 
the selection manager.

removeSelected
oid
-
-

2D - Remove the link object from the selection 
held by the selection manager.

clearSelections
oid
-
-

2D - Clear all selections held by the selection 
manager.

kbCopy (iqr)
originalOid
copyOid
-

2D B 
C

Copy the link object represented by the link 
editor to the clipboard.

operation
kbo

newValue
oldValue

UI
type

U
T

Operation description
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C.9  Views
Views were introduced in section 18.3.3 on page 156. They are a special
kind of window that allow object editors and link editors to be created
dynamically. 

Table 45 shows special operations to log for views.

Table 45: Basic operations to log for views.

kbPaste (iqv,iqc)
oid
pasteOid
copyOid

2D B 
C

Paste the contents of the clipboard to the 
link object represented by the object editor, 
if possible.

operation
kbo

newValue
oldValue

UI
type

U 
T

Operation description

uiZoom (iqv,iqr)
oid
newViewRect
oldViewRect

2D - Zoom, pan or scroll within the view.

kbCreate (iqv,iqc)
newOid
newUioEditorRect
-

2D B 
C

Create a new kbo, or rec, based on 
objects in the current selection, and add 
an object- or link editor for it to the view.

uiAdd (iqv,iqr)
addedOid
newObjectEditorRect
-

2D B
C

Add a new object or link editor to the 
view for the kbo or kbo’s in the selection.

clearSelections
oid
-
-

2D - Clear all selections held by the selection 
manager.

kbCopy (iqr)
originalOid
copyOid
-

2D B 
C

Copy all selected objects within the view 
to the clipboard.

operation
kbo

newValue
oldValue

UI
type

U
T

Operation description
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kbPaste (iqv,iqc)
oid
pasteOid
copyOid

2D B 
C

Paste the contents of the clipboard to the 
view, if possible.

operation
kbo

newValue
oldValue

UI
type

U 
T

Operation description
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Appendix D Information Processing 
Model of a User

In [Card et al. 83] the authors introduce an information processing model of
a human user68. The model is a comprehensive synthesis of human
characteristics derived from a large set of experimentally verified data.
This model can be used for theoretical evaluation of different user interface
designs. This appendix will give a short description of its essence. The
interested reader is encouraged to read the second chapter of [Card et al.
83].

 The Model Human Processor (MHP) consists of three processors: the
perceptual, the cognitive and the motor processor. They interact with each
other through the visual image store, auditory image store and working
memory (WM). WM consists of activated chunks in long term memory
(LTM). Sensory information flows into WM through the perceptual
processor. The basic principle of operation is the recognize-act cycle of the
cognitive processor (Principle P0 described below). The motor processor is
set in motion through activation of chunks in WM. Each of the processors
has cycle times τ of about 100 msec. The visual image store has a half-life
of about 200 milliseconds and can store an image of a size of about 15
letters. Working memory can hold about seven chunks, and has a half-life
depending on the amount of chunks currently activated. Experiments show
half-lives of 70 seconds for a single chunk and about 7 seconds when three
chunks are activated simultaneously.

The following ten principles describe the operation of the Model Human
Processor (from [Card et al. 83] p 27):

P0.  Recognize-Act Cycle of the Cognitive Processor. On each cycle of the 
Cognitive Processor, the contents of Working Memory initiate actions 
associatively linked to them in Long-Term Memory. These actions in 
turn modify the contents of Working Memory.

P1. Variable Perceptual Processor Rate Principle. The perceptual 
processor cycle time τp varies inversely with stimulus intensity.

68. The model is a rather technical one and is intended to provide a handle on the
“intangible human” for mathematical and other scientific analysis of user interfaces. Care
should be taken when generalizing results that are derived from these kinds of models.
Since humans are so immensely complicated naturally only limited sets of human
characteristics can be taken into account using such a model.
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P2. Encoding Specificity Principle. Specific encoding operations 
performed on what is perceived determine what is stored, and what is 
stored determines what retrieval cues are effective in providing access to 
what is stored.

P3. Discrimination Principle. The difficulty of memory retrieval is 
determined by the candidates that exist in memory, relative to the 
retrieval clues.

P4. Variable Cognitive Processor Rate Principle. The Cognitive 

Processor cycle time τc is shorter when greater effort is induced by 
increased task demands or information loads. It also diminishes with 
practice.

P5. Fitt’s Law. The time Tpos to move the hand to a target of size S which 
lies a distance D away is given by:

(EQ 39)  

where IM = 100[70∼120] msec/bit.

P6. Power Law of Practice. The time Tn to perform a task on the nth trial 

follows a power law:

(EQ 40)

where a = 0.4 [0.2∼0.6].

P7. Uncertainty Principle. Decision time T increases with uncertainty 
about the judgement or decision to be made:

(EQ 41)

where H is the information-theoretic entropy of the decision and Ic = 150 

[0∼157] msec/bit. For n equally probable alternatives (called Hick’s 
Law),

(EQ 42)

For n alternatives with different probabilities, pi, of occurrence,

(EQ 43)

Tpos IMlog2 D S⁄ 0,5+( )=

Tn T1n
a–

=

T IcH=

H log2 n 1+( )=

H pilog2 1 pi⁄( )
i

∑=
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P8. Rationality Principle. A person acts so as to attain his goals through 
rational action, given the structure of the task and his inputs of 
information and bounded by limitations on his knowledge and 
processing ability:

(EQ 44) Goals + Task + Operators + Inputs + Knowledge + Process-limits 

⇒ Behavior 

P9. Problem Space Principle. The rational activity in which people engage 
to solve a problem can be described in terms of (1) a set of states of 
knowledge, (2) operators for changing one state into another, (3) 
constraints on applying operators, and (4) control knowledge for 
deciding which operator to apply next.
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Appendix E Model of Human Mental 
Object Models

This appendix briefly describes some ideas inspired from cognitive
psychology that have guided the design of the user interface software
architecture. Much of their origin and inspiration come from
[Lindsay&Norman 77],[Minsky 75],[Schank 82] and of course [Card et al.
83]. The text below has to be viewed in an “approximate” way. The purpose
is to give the reader an idea of a “soft” hypothesis of how human memory
works. As mentioned before, the number of features under consideration
when modelling human memory structures has to be restricted. It is
important to remember that the purpose of this model is to have some
guidance for the design of efficient user interfaces for knowledge engineers
and experts when they want to build and interact with large knowledge-
bases for artificial real systems69. Care should be taken not to make any
over-generalizations.

E.1  Chunks
The basic primitive of human knowledge structures seems to be the chunk.
A chunk is a mental representation of something, and at the same time an
organizer for other chunks. A chunk is stored in long term memory (LTM),
and is recalled to working memory70 (WM) when parts of its contents
happen to appear in WM. A chunk can group together about 5 to 9 other
chunks in a particular context71. The need for hierarchical organization is a
consequence of human memory being organized in chunks. The
organization of knowledge into rules, objects and procedures (or scripts) is
also a consequence of the human chunking mechanism.

A good knowledge representation does not violate the 5-9 limit of the
number of related chunks in a particular context. Therefore, a good rule
should not contain more than 5-9 premises. A good object should not have
more than 5-9 attributes, or groups of related attributes. A good procedure
should not contain more than 5-9 statements, unless they can be divided
into groups where each group of statements can be grasped as one single

69. The concept of real system was defined in 5.1.1 on page 32. By artificial real systems,
we mean systems that are entirely designed by humans. Natural real systems from fuzzy
domains such as medicine may be very hard to model formally.
70. Often referred to as short term memory (STM) in the literature.
71. This is a coarse simplification, but it will do for describing the general idea.
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chunk.

The reason for chunking seems to be the limitations of human working
memory. WM can only contain about 5-9 chunks at any one time72. If a new
chunk is activated, another becomes deactivated, to make “room” for it.
The deactivation is not discrete. We talk about a half-life of about 7
seconds [Card et al. 83], p38. If a chunk is not actively put into mental
focus again, the chance of it reappearing decreases exponentially with time.

The chunking mechanism operates without the human being aware of it.
Observable psychological phenomena with limited WM capacity can be
explained by the chunk phenomena. For instance, the reason why humans
have problems understanding a long sentence is explained by the fact that it
does not fit into the chunk capacity of working memory. The way to
overcome this is to try to understand the parts of the sentence by making
chunks of them, and then understanding the total sentence by seeing the
connections between the parts, and thus make an organizing chunk. The
concept of elementary constellations defined in section 12.4 on page 100 is
closely related to what can be stored in a single chunk.

E.2  Learning, or storing chunks in long term memory
Learning, or storing chunks in LTM, occurs when different chunks are
simultaneously activated in WM. During the activation an association is
enforced between the chunks. This association allows other chunks to be
recalled (i.e. reactivated) when one of its associates becomes activated
later. Activation time, uniqueness and strength of emotional state seem to
have a strong impact on the “permanency” of a chunk in LTM. Interest, for
instance, is an emotion that helps the storing process.

E.3  Recalling of chunks
Sensory stimuli have a strong influence on the recall of chunks. Hearing a
word or a voice, or seeing a picture or a written symbol immediately allows
us to recall our “chunked” experience associated with the sensory stimuli.
This is the famous “symbolic” mechanism that is one of basic mechanisms
contributing to human intelligence.

The process of reading is an example of a continuous stream of visual
stimuli that recalls (activates) previously stored chunks. The order that
words are written in influences the pattern of chunk-activation. The chunks
interfere with each other, producing an integrated mental picture, which
becomes the readers interpretation of the text. Active thinking is another
way of recalling chunks. The current mental state, i.e. the currently
activated chunks in WM try to activate other chunks in LTM which they
have previously been associated with.

72. Psychological experiments show that the actual limit of activated chunks in working
memory is about three [Card et al. 83] p 39. However there is a floating border between
activated chunks and chunks stored in long term memory, so in practice it becomes 5-9.
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The process of active thinking and recall requires less effort if it is
supported by visual stimuli. Take, for instance, an engineer working on an
electronic circuit design. Fetching a piece of information (i.e. receiving and
interpreting an e-message73) about a particular circuit design into WM is
achieved faster by looking at a drawing than by trying to recall its
corresponding chunk from LTM, even if it is there. Which technique is used
depends on which one is faster in the current situation. Say for example that
all information of how this circuit is connected is represented on a drawing
that has been prepared by an engineer himself. If this drawing is in the next
room at the particular moment when he needs the particular information,
recalling the corresponding chunk from LTM is probably faster. If the
drawing was on his desk, a visual fetching of the e-message from the
drawing on the desktop would probably be faster.

E.4  The Soft Semantic Network Hypothesis
Human knowledge (of the type that is useful for engineering) is organized
as a “soft” semantic network (SSN). A SSN is a specialization of a mental
model. The nodes in the SSN are distinct chunks, each representing some
concept, and the links are associations between the chunks. In WM, there
can only be a limited number of chunks or “nodes” activated at the same
time. The reactivation of a chunk (or node in the SSN) is only possible if
there are links to it from currently activated chunks. Visual stimuli,
occurring during the reception of an e-message through the senses will put
sensory activation into VM. This activation pattern enforces a reactivation
of its associated chunks in LTM, i.e. provokes a re-presentation.

When there are no external stimuli available that can induce a certain
activation pattern into WM associated with a particular chunk, this chunk
can only be retrieved from LTM by following a path in the SSN. This is
how the process of active remembering works.

Visual or other sensory stimuli can immediately activate any of the nodes in
the SSN given that it has been associated with a certain visual key. Words,
icons and symbols are, for instance, visual keys. By providing the right
(visual) stimuli, any node can be brought into WM instantaneously. The
association between a visual key and a node requires a learning effort i.e.
learning the graphical syntax for certain semantical concepts.

E.5  Connection between KB, UI and SSN
A knowledge-base is supposed to represent and simulate the knowledge of
a human expert. This means being some kind of picture of one (or several)
experts’ SSN. The problem of knowledge acquisition is to elicit and
express the SSN in some external knowledge representation i.e. a
conceptual model. This model is then analysed and a model of the

73. The e-message could be for instance <IC71,<pin7, GND>> which means that pin
number 7 of the integrated circuit 71 is to be connected to the ground power supply.
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conceptual model (meta-model) is formulated which defines the format of
knowledge to be entered into the knowledge-base. Knowledge visualization
during the knowledge acquisition process often gives the expert new
insights that make him/her reorganize his/her SSN. This is why knowledge
acquisition has to be performed in an iterative way.

The development of a meta-model of a domain is a way of giving the expert
a language for expressing the contents of his SSN. The language itself will
both influence his SSN and be the core for the view others get of the
knowledge. As mentioned, experience in knowledge acquisition shows that
once a model of the conceptual model is formulated and a user interface
built for entering the knowledge into the knowledge-base, the expert
preferentially uses it on his own to enter and model the larger bodies of
detailed knowledge.

Entering and refining the knowledge of a knowledge-base is a creative
iterative process. It can be accelerated if the system places no restrictions
on the possibility of visualizing the knowledge and allows the expert to
experiment with it. The expert’s line of thought can traverse his entire SSN.
At any time, he may want to have visual stimuli support to recall the details
of any information or knowledge previously entered into the knowledge-
base. The user interface should provide him with this support.

E.6  Mapping the SSN to the KB
The user interface should provide the expert with visual keys which he
associates with the contents of his own SSN and through which he can
reach the information and knowledge entered into the knowledge-base.
This means that the graphical syntax for semantic concepts should be
developed in close cooperation with the expert.

The organization of knowledge-base views into object- and link editors will
give the expert user a visual map over the contents of the knowledge-base,
which is a model of his/her own SSN. This visualization and feedback
allows him to reason about his own knowledge. The knowledge-base views
enable him to acquire an efficient access structure over his own expertise.
This access structures can later be internalized and used during mental
reasoning.

E.7  Reservation against the concept of SSN
The model of the expert’s knowledge structures as an SSN is a metaphor for
explaining ideas. Chunks are not implemented in the form of some kind of
distinct nodes, but rather as a spatio-temporal activation pattern in the
neurons of the brain. A chunk has no explicit links to other chunks, but its
activation pattern puts a kind of statistical gravitation on other chunks’
activation patterns, depending on how the chunks have been activated in
WM before. If different chunks are activated in WM at the same time, each
of their statistical gravitation fields will interact and enforce or repel the
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activation of other chunks. If a set of chunks stay in WM long enough, they
will form a new chunk which inherits its constituents’ gravitational fields.

E.8  Conclusions
The conclusion of the hypothesis of human memory described above is that
the user’s mental activities should be supported by the graphical user
interface. The objects and relations in the knowledge-base and mental
models should be visualized. The pictorial structure of the views are
worthwhile remembering in themselves, since they will become organizing
chunks for their constituents. Such “picture” chunks can, as mentioned, be
incorporated into the user’s mental model of the knowledge-base and used
in his mental reasoning processes.

Access to information and knowledge in the knowledge-base should be fast
because of the half-life of WM.
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Appendix F User Interaction Example

FIGURE 46. Example that illustrates walking an associative access path 
over relational e-constellations to find information in an object-oriented 
knowledge-base. The user wants to find out who the designer of the geometry 
of a certain aircraft wing part is i.e. find the e-constellation <G2,<designer, 
"John Smith">>. The initial view v1 on the screen displays parts of a 
structural model (product model) of the aircraft. The access path passes three 
view instances v of different window types; the product model view, the 
project plan view and finally the employee registration card view.
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Appendix G Sample OO-model of a Car 
Braking System

This appendix illustrates some concepts introduced in chapter 18.3 on page
156 by showing a small instance of an infological model that represents a
structural model of a car braking system. The model is used to illustrate
different types of views on the object-oriented model and to give an idea of
how to quantify the information content numerically as the number of
elementary constellations. (See chapter 12 on page 97 for definitions of the
theoretical concepts). 

G.1  A structural view (71 e-messages)
Figure 47 shows a stylistic view of the structural model of a car braking
system. It utilizes the user’s background knowledge about the relative
spatial layout of a car for interpretation. The car braking system contains
two isolated brake circuits, that each influence three of the car’s wheels.

FIGURE 47. A view of a structural model of a car braking system.

The four shaded rectangles (w1..w4) represent the wheels. The disc brakes
are named db1 to db4. The brake tubes (bt1-bt6) propagate the pressure
from the right- and left brake fluid reservoirs (rbfr,lbfr) to the disc brakes.
The two brake circuit reservoirs are fluidly disconnected, but maintained at
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a constant pressure by a connection to the main brake cylinder (mbc). mbc
is physically connected to the brake pedal (bp). A left and a right brake
circuit (rbc,lbc) can be inferred from the structural connections, e.g. rbc
consists of db1,db2,db3,bt1,bt2,bt3 and rbfr. If the components of the two
brake circuits together with the names rbc and lbc were painted in different
colours, for example rbc in red and lbc in green, the knowledge view could
be split up into 71 e-constellations, as shown in Fig G.7 on page 228. 

The utilization of the users “invisible” background knowledge makes views
such as the one in Figure 47 very efficient (i.e. they have a high e-message
density on the screen and are easy for the user to remember and recall). A
structural view of this kind can obviously not be automatically generated
by a graph drawing algorithm. The spatial layout has to be stored explicitly
in the model. It is possible to use the user interface software architecture
for this purpose. 

The drawing algorithms in the view v have to have an explicit mapping
function for the object identifiers of instances i to geometric coordinates
for their corresponding object editor instances oe. Though the main purpose
of the software architecture is not to draw these kinds of views. The
structural view in Figure 47 was introduced to give a comprehensive view
of the contents of the sample object-oriented knowledge-base.

G.2  A classical knowledge-base browser view
A classical KB-class browser view of the object-oriented knowledge-base
could look like the one depicted in Figure 48 on page 226. This view
provides fast access to all classes and instances in the KB. The bold links
denote subclass relationships and the dotted ones denote instance-of
relationships. There are 5 subclass links and 18 instance-of links which are
e-messages for relational e-constellations. The view also contains e-
messages for the name attribute of each class and instance. There are 6
classes and 18 instances. The view expresses 5 subclass and 18 instance-of
relationships, 6 class name attributes and 18 instance name attributes
which makes a total of 47 e-messages. Observe the spatial sorting order
provided in this view. Class ‹ subclass ‹ instance is the topological
ordering in the left to right direction. The object editors on the same level,
having the same ancestor, are sorted alphabetically by name. This is an
example of sorting criteria that have to be specified in the view-class V that
implements the view. If the knowledge engineer has a KB that contains, for
example, 200 classes and 1000 instances, the sorting orders in this view
allow him to quickly visually look up an object editor for a certain instance.
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FIGURE 48. A classical KB-browser view that is commonly provided by 
frame-based expert system shells.

G.3  Topological index views
Topological indexes can be used for coarse visual search. Figure 49 shows
an example of a topological index of the KB-view in Figure 48. The benefit
of a topological index is the low amount of screen space it uses. Object
editors for this kind of view only express the existence of an instance.
Further information can quickly be obtained by issuing a kbRead-operation
on the object editor (See Table 35 on page 199). A simple implementation
of this type of topological index view is provided, for example, by KEE
[Intellicorp 87] for fast visual navigation through large knowledge-bases.

FIGURE 49. A topological index of the view in Figure 48.
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G.4  A part-of view ( 30 e-messages )
Figure 50 shows the part-of relationship for the components in the car
braking system. This view is very useful for modeling purposes, but may
not be provided by expert system shells. Note that the object editors do not
have to be rendered as the names of the different parts. They could be in the
form of icons or boxes containing fields with attribute information other
than the name. If the topological sorting is strictly defined, the spatial
location represents the identifying attribute for each object.

FIGURE 50. A view that shows the part-of relationships in the two brake 
circuits. Note the alphabetical sorting order on the different 
levels.

G.5  A simple table view ( 30 e-messages )
Figure 51 contains a simple table view. These are typically sorted in
alphabetical order, which allows a fast visual “binary search” in the vertical
direction, to locate the object editor of interest. This table expresses the
same 30 elementary constellations as Figure 50.

FIGURE 51. A simple table view that expresses the same part-of 
relationships information as Figure 50.

G.6  A PERT-diagram view.
PERT stands for program evaluation and review technique[Schaffer et al.
65]. PERT-diagrams are commonly used for visualizing the time
requirements and dependencies among tasks during the planning of a
project. The PERT-diagram in Figure 52 expresses time on the horizontal
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axis, and parallel design activities in the vertical dimension. Note that there
is no scaled sorting order in the vertical dimension. The object editors
which represent milestones are placed by the algorithm (in a view-class V)
to avoid crossing links[Battista et al. 89]. The link editors (e.g. le1) which
denote design activities are annotated with the duration that the activities
are expected to take. Possible user interactions on the link editors can pop
up a menu and provide more information about the activity. A click on the
object editors (e.g. oe1) might display the exact point in time for that
milestone. The elementary message analysis is left for the reader. 

FIGURE 52. A PERT-diagram view.

G.7  An elementary constellation view (71 e-messages)
Below, we have a list of all the elementary constellations contained in the
sample structural model in Figure 47 on page 224. There is no particular
well-defined sorting order.

Attribute e-constellations:

1) <w1,<name,"w1">>
2) <w2,<name,"w2">>
3) <w3,<name,"w2">>
4) <w4,<name,"w4">>
5) <db1,<name,"db1">>
6) <db2,<name,"db2">>
7) <db3,<name,"db3">>
8) <db4,<name,"db4">>
9) <bt1,<name,"bt1">>
10) <bt2,<name,"bt2">>
11) <bt3,<name,"bt3">>
12) <bt4,<name,"bt4">>
13) <bt5,<name,"bt5">>
14) <bt6,<name,"bt6">>
15) <rbfc,<name,"rbfc">>
16) <lbfc,<name,"lbfc">>

10
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17) <mbc,<name,"mbc">>
18) <bp,<name,"bp">>
19) <lbc,<name,"lbc">>
20) <rbc,<name,"rbc">>

Relational e-constellations :

21) <<Wheel,w1>,instance-of>
22) <<Wheel,w2>,instance-of>
23) <<Wheel,w3>,instance-of>
24) <<Wheel,w4>,instance-of>
25) <<DiskBrake,db1>,instance-of>
26) <<DiskBrake,db2>,instance-of>
27) <<DiskBrake,db3>,instance-of>
28) <<DiskBrake,db4>,instance-of>
29) <<BrakeTube,bt1>,instance-of>
30) <<BrakeTube,bt2)>,instance-of>
31) <<BrakeTube,bt3>,instance-of>
32) <<BrakeTube,bt4>,instance-of>
33) <<BrakeTube,bt5>,instance-of>
34) <<BrakeTube,bt6>,instance-of>
35) <<BrakeFluidContainer,rbfc>,instance-of>
36) <<BrakeFluidContainer,lbfc>,instance-of>
37) <<BrakeCylinder,mbc>,instance-of>
38) <<BrakePedal,bp>,instance-of>
39) <<rbc,rbfc>,part-of>
40) <<rbc,bt1>,part-of>
41) <<rbc,bt2>,part-of>
42) <<rbc,bt3>,part-of>
43) <<rbc,db1>,part-of>
44) <<rbc,db2>,part-of>
45) <<rbc,db3>,part-of>
46) <<lbc,lbfc>,part-of>
47) <<lbc,bt4>,part-of>
48) <<lbc,bt5>,part-of>
49) <<lbc,bt6>,part-of>
50) <<lbc,db1>,part-of>
51) <<lbc,db3>,part-of>
52) <<lbc,db4>,part-of>
53) <<rbfc,bt1>,fluid-connected>
54) <<rbfc,bt2>,fluid-connected>
55) <<rbfc,bt3>,fluid-connected>
56) <<bt1,db3>,fluid-connected>
57) <<bt2,db1>,fluid-connected>
58) <<bt3,db2>,fluid-connected>
59) <<lbfc,bt4>,fluid-connected>
60) <<lbfc,bt5>,fluid-connected>
61) <<lbfc,bt6>,fluid-connected>
62) <<bt4,db1>,fluid-connected>
63) <<bt5,db3>,fluid-connected>
64) <<bt6,db4>,fluid-connected>
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65) <<bp,mbc>,brake-influence>
66) <<mbc,rbfc>,brake-influence>
67) <<mbc,lbfc>,brake-influence>
68) <<db1,w1>,brake-influence>
69) <<db2,w2>,brake-influence>
70) <<db3,w3>,brake-influence>
71) <<db4,w4>,brake-influence>

FIGURE 53. A textual representation of the 71 e-constellations that model 
the car braking system in Figure 47 on page 224.

G.8  Conclusion
In section 18.2 on page 151 we introduced the user interface software
architecture and a notation for different concepts. The notation is intended
to allow a mathematical representation for comparing different user
interface configurations. Automatic calculations of the number of
elementary message built into the uio’s might be useful. The number of e-
messages expressed by object editors oe and link editors le of particular
implementation classes OE and LE can easily be calculated initially, and
stored in methods in OE and LE. A view-instance v can then easily count
the number of e-messages expressed by summing the e-messages for each
of its visible uio’s. If we proceed further with such calculations, we could
estimate how accessible objects in the knowledge-base are to the
knowledge-engineer. Mathematical analysis techniques similar to the ones
that are used for estimating the average performance of application
programs that work on a data-base with a certain index configuration could
be used for tuning the graphical user interface for large knowledge-bases. If
the abstract uio-implementation classes are augmented with methods for
collecting statistics from the user interaction, experimental data can be
collected automatically. Such data enables performance evaluation of
different user interface designs based on actual measurements.

The possibilities for applying the software architecture for interaction with
modern commercial object-oriented databases seem very good [Cattell et
al. 96].

The proposed software architecture demonstrates a way to implement user
interfaces that allows reduced granularity and increased referability of
stored data. By using different knowledge views that work both as
graphical knowledge representations and as natural domain related indexes
to the contents of the knowledge-base, we get access paths of varied types.
The need to invent unique mnemonic names for objects decreases, since
they can be identified by their relative locations and referred to by
pointing. These properties are consistent with those proposed as future
developments in artificial intelligence by Sandewall in [Sandewall 88].
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