
O. Johansson. FMDesign Overview 2008-11-14. TMKT47/TMPS18

 1

FMDesign Overview

Olof Johansson

Contents

FMDesign Context and architecture ... 2
Overview of FMDesign User Interface... 5

Stakeholder Tree ... 6
Requirement Tree.. 7
Function Means Tree .. 8
Product Concept Tree ... 9
Implementation Tree... 11
Probabilistic Variables .. 11
Design Matrixes .. 12

Summary ... 13
References... 13
Appendix A. FMDesign 2.0 UML class diagram.. 14

olojo
Text Box
Copyright (C) 2008-2018 ROJTEC, Olof JohanssonCopyright (C) 2008 Linköping UniversityYou may download and use a personal copy of this document. You may not distribute copies of this document to 3rd parties without a written permission from one of the copyright holders.

O. Johansson. FMDesign Overview 2008-11-14. TMKT47/TMPS18

 2

FMDesign Context and architecture

Figure 1 shows the role of FMDesign amongst some of its surrounding engineering
processes, connected with major workflow arrows. Engineering tools (FMDesign,
ModelicaDB, ModelicaXML, Modelica Simulation tool) support some of the processes.

Engineering models are stored in files and in databases. The communication of design
information between successive tools in the workflow can be handled through task
automation and tool integration using web services [8] or shared access to databases and
files.

Figure 1. FMDesign in its context

FMDesign is a tool for designing product concepts with the aid of integrated requirement
trees, function-means trees, product concept trees, and implementation trees. An
implementation tree specifies the product structure and its interacting components of a
particular product concept on an abstraction level that is detailed enough so the structure,
system design, geometrical shape information etc can be used by external parameter
calculation tools. There the models are refined such that calculations can be made for
design variables like geometry, weight, drag, inertia, centre of gravity etc and feed back
as implementation attributes on the objects in the implementation tree.

Once enough details about the static structures of a product concept have been
specified, the implementation tree can be annotated with behavioural models selected
from external simulation libraries, and its implementation attributes supplied as
parameters to generated simulation models which are executed in external simulation
tools. Current integrations with simulation tools use the Modelica language semantics as
base for simulation model exchange formats [9]-[15].

Relevant processing results from external tools are feed back into the product model
in FMDesign, where checks how well its different product concepts fulfil requirements

O. Johansson. FMDesign Overview 2008-11-14. TMKT47/TMPS18

 3

can be made. Relevant calculation and simulation results stored in the product models
provide convenient data sets to decision support tools for the continued product concept
generation and selection process.

FMDesign stores product models in a design library database. This library includes
products under development, and third party products that are used as sub-systems and
components in the currently designed products. The products are organized into one or
several parallel configurable product categorization hierarchies, so the designer quickly
can find relevant supplier products and include them as objects in implementation trees.

Starting from requirements for a product the designer uses FMDesign for modelling
alternative product concepts. The knowledge base for product design is organized into
function-means trees. A function in the product can be realized by alternative means. A
product concept is a set of means that document selected means for implementing the
functions in a product concept. Example of a function is "Actuator Power Supply", with
alternative means like "Hydraulic Power Supply" and "Electrical Power Supply". Means
must be implemented by (physical) components arranged in the bill-of-material like
implementation tree of implementation objects.
 A means object and its corresponding implementation objects roughly represent the
same thing, but at different levels of abstraction and detail. Implementation objects may
represent existing component products on the market or manufactured components. Some
(physical components) may implement several means, like an aircraft wing that creates
lift and stores fuel. Implementation objects only carry implementation attributes that are
important for the product concept design, and provide references to more detailed design
information like CAD-drawings, simulation models etc as URLs, file names or object
identifiers in databases.

O. Johansson. FMDesign Overview 2008-11-14. TMKT47/TMPS18

 4

Figure 2. RAVEN – Small Business Jet

As an example an aircraft system design is chosen. This represents a system of high
complexity, a high degree of interconnectivity, it involves many domains, and have one
very formal subset of requirements in the form of the Federal Aviation Regulations FAR
[16]. These are available on-line and can be directly linked into the product model
presented here. The fictious example here represents a business jet.

O. Johansson. FMDesign Overview 2008-11-14. TMKT47/TMPS18

 5

Overview of FMDesign User Interface

This section gives a walkthrough of FMDesign functionality as reflected in its user
interface. Appendix A shows how the information is structured within the tool. Figure 3
shows the design library window which appears when the FMDesign front-end tool is
launched at the user’s workstation.

Figure 3. FMDesign Design Library Window

The product category tree allows the user to quickly narrow the list of all products
displayed in the Products list-box to the ones in the category searched for. Products can
quickly be moved from one product category to another with the drag-and-drop interface.
Selecting a product, and pressing the “Product Window” button opens the Product
Window in Figure 4.

O. Johansson. FMDesign Overview 2008-11-14. TMKT47/TMPS18

 6

Figure 4. Product Window

The Product Window provides access to the trees that structure the product model and
menus with tools for checking the model with design rules, generating reports etc. Trees
that are deeper than a few levels can be edited in separate browser windows. These are
launched by selecting an appropriate object and opening a tree browser window that has
the selected object as root with a press of a “Browse” button.
In the following the different product model trees are explained in more detail.

Stakeholder Tree
A stakeholder is an organization or category of persons with a certain interest in the
product. Stakeholders can be users, operators, owners/buyers/customers, engineers,
manufacturers, management etc.

O. Johansson. FMDesign Overview 2008-11-14. TMKT47/TMPS18

 7

Figure 5. Stakeholder Tree

The stakeholder tree organizes stakeholders into different categories. Each stakeholder
may own effectiveness measures. Effectiveness measures establish the criteria by which
alternative product concepts will be judged by its stakeholder. They provide guidance to
the developers of structure and behavioural models on what is most important to the
different stakeholders. See [5], Chapter 6.

Requirement Tree
The requirement tree structures the requirements into different topics, from overall non-
functional requirements [6] down to optional requirements that are enforced when a
particular means is selected for a function. Figure 6 shows a requirement browser opened
on a copy of Part 25 within the Federal Aviation Regulations [16].

Figure 6. Requirement Tree

O. Johansson. FMDesign Overview 2008-11-14. TMKT47/TMPS18

 8

Requirements can be linked with drag-and-drop to other design objects like functions and
means that are affected.
Numerical requirements like operation range, max speed etc can optionally be specified
as a probabilistic distribution which describes the range in which the final design is
desired to perform. This facility efficiently tells the designers what room they have for
trade-offs.

Function Means Tree
The function-means tree serves as a tool for creative layout and later documentation and
evaluation of the high-level design space considered for the product. See Figure 7.

It works as an ordinary function means tree, except for the inclusion of operation
states. These specifies a certain state of operation for the product, e.g. for an aircraft, “In
flight”, “On Ground” etc. Each operation state only groups the functions that are
necessary for the product to perform in that operation state. The same function can be
grouped under several different operation states. Dividing the products mission cycles
into operation states gives the designer focus on what functions that are necessary in
different states, and what requirements that apply to these functions in a particular state.
A function can have design variables like outputForce, outputTorque etc. These can have
an assigned value, optional probabilistic distribution, and a variable type that tells if this
is a variable that is controllable by the designer or not, or a value calculated by an
external program that takes other variables as input.

Figure 7. Function Means Tree

O. Johansson. FMDesign Overview 2008-11-14. TMKT47/TMPS18

 9

A means can also have design variables that specify the ones in its function more
precisely, and perhaps additional variables that are specific to that means.

A benefit with function means trees compared with less formal traditional design
methods, is that much of the knowledge and research that is documented in it is often lost
or hard to find after the designers have decided on a particular product concept and
proceeded with its detailed design. When the design of the next release of the product is
started, some means that were not selected in the last product design phase may be
interesting again, since technology and requirements may have changed. Much research
and exploration may have to be done again, perhaps by new people if the market cycle for
a product revision is long.

Product Concept Tree
A product concept tree documents which means that is selected for each used function in
the function means tree. The product concept tree fixes the design choices such that a
product implementation can be modelled and evaluated.
A MeansSelection is an object that documents what Means that was selected for a
particular function. It may be connected to one or several implementation objects in the
implementation tree. In some cases, the design variable specifications for a Function-
Means pair must be further customized when it is selected in a particular product concept.
The design variable value or associated probabilistic distribution may have to be changed.
This can be done by ValueSelection objects that override specific design variables for a
particular means selection.

O. Johansson. FMDesign Overview 2008-11-14. TMKT47/TMPS18

 10

Figure 8. Product Concept Tree

The same function and means can be instantiated many times in a product concept. For
example the aircraft may have several engines of the same type.

O. Johansson. FMDesign Overview 2008-11-14. TMKT47/TMPS18

 11

Implementation Tree
The implementation tree displays and provides functionality for editing one of many
configurable implementation trees for a particular product concept.

Figure 9. Implementation Tree

These implementation trees organize the implementation objects that represent and refer
to more detailed models of physical objects, functional models, simulation models,
geometrical layout models etc, and organize them into trees that are useful for interfacing
with tools later in the product development process.

Probabilistic Variables
All variables that may have a numeric value like Requirements, DesignVariables, and
ImplementationAttributes are probabilistic variables that can have an optional

O. Johansson. FMDesign Overview 2008-11-14. TMKT47/TMPS18

 12

probabilistic distribution. Currently normal-, uniform-, interval- value-, and a special
custom distribution with a configurable probability density function are supported.
Probabilistic variables may optionally have an assigned designSpaceMax, and
designSpaceMin value, which let the designer set fixed limits for design space
exploration by external optimization programs.

Design Matrixes
Design matrixes provide views on the trees and how individual objects in different trees
are related to each other.

Figure 10. Design Matrix

 Figure 10 shows a function means tree to implementation tree mapping. Other design
matrixes show:
Stakeholder requirements to effectiveness measure mapping, where the requirements
specify target values for the effectiveness measures relevant for different stakeholders.

O. Johansson. FMDesign Overview 2008-11-14. TMKT47/TMPS18

 13

Stakeholder tree to main function tree mapping. A main function tree only show the root-
most functions of the product and not any sub functions of any particular means. The
values in this matrix show the requirement priority a certain stake holder gives to a
particular function, and can guide the design project resource allocation and scheduling of
implementation and evaluation efforts for different functions.
Connection matrix, which is an implementation tree to implementation tree mapping,
where the values in the matrix specify if two implementation objects are connected. This
information may guide the initial geometrical layout of the product.

Summary
FMDesign is a tool for designing product concepts with the aid of integrated requirement
trees, function-means trees, product concept trees, and implementation trees.
Design matrixes provide views on the trees and how individual objects in different trees
are related to each other.

References
[1] Mogens Myrup Andreasen. "Machine Design Methods Based on a Systematic Approach

(Syntesemetoder pa systemgrundlag)", Lund Technical University, Lund, Sweden, 1980

[2] Bracewell, R.H. and Sharpe, J.E.E., "Functional descriptions used in computer support for
qualitative scheme generation - "Schemebuilder"", AI EDAM Journal - Special Issue: Representing
Functionality in Design, v10, n4, pp333-346, 1996

[3] Bracewell, R.H. and Sharpe, J.E.E., "The use of Bond Graph Methodology in an Integrated
Interdisciplinary Design System", in Joint Hungarian-British Mechatronics Conference, Budapest,
Computational Mechanics Publications, pp595-600, 1994

[4] Sören Wilhelms, "Reuse of principle solution elements in conceptual design : an information
model for concepts in systematic design", 2003, ISBN : 91-7373-746-1

• Krister Sutinen, "Supporting requirements management by requirements driven product modelling",
Doktorsavhandlingar vid Chalmers tekniska högskola. New series nr 2065, Sweden, 2004

[5] David W Oliver et. al "Engineering Complex Systems with models and objects", McGraw-Hill,
1997, ISBN 0-07-048188-1

[6] Andreas Borg, “Contribution to Management and Validation of Non-Functional Requirements”,
Linköping University, 2004

[7] INCOSE, International Council on System Engineering, http://www.incose.org

[8] Björn Johansson, Petter Krus, "A WEB SERVICE APPROACH FOR MODEL INTEGRATION
IN COMPUTATIONAL DESIGN", Proceedings of DETC’03, ASME 2003 Design Engineering
Technical Conferences and Computers and Information in Engineering Conference Chicago, Illinois
USA, September 2-6, 2003, DETC2003/CIE-48196

[9] Modelica Association, "A Unified Object-Oriented Language for Physical Systems Modeling,
Language Specification version 2.1", Modelica Association, 2004

[10] Modelica Association, http://www.modelica.org

[11] Modelica Association, "Modelica Libraries", http://www.modelica.org/library

[12] Peter Fritzson, "Principles of Object-Oriented Modeling and Simulation with Modelica 2.1",
IEEE Press, 2004, ISBN 0-471-47163-1

O. Johansson. FMDesign Overview 2008-11-14. TMKT47/TMPS18

 14

[13] Olof Johansson, Adrian Pop, Peter Fritzson, "ModelicaDB - A Tool for Searching, Analysing,
Cross-referencing and Checking of Modelica Libraries", in Proc of 4th International Modelica
Conference, 8-10 March, 2005, Hamburg, Germany,
http://www.modelica.org/events/Conference2005

[14] Olof Johansson, Adrian Pop, Peter Fritzson, "A Functionality Coverage Analysis of Industrially
used Ontology Languages", in Model Driven Architecture: Foundations and Applications (MDAFA),
2004, 10-11 June, 2004, Linköping, Sweden.

[15] Adrian Pop, Olof Johansson, Peter Fritzson, "An integrated framework for model-driven product
design and development using Modelica", in Proceedings of the 45th Conference on Simulation and
Modeling (SIMS), 23-24 September 2004, Copenhagen.

[16] Risingup Aviation, "Federal Aviation Regulations Part 25: Airworthiness standards: Transport
category airplanes", Web resource for research: http://www.risingup.com/fars/info/25-index.shtml

[17] RosettaNet, http://www.rosettanet.org

[18] RosettaNet, "RosettaNet Technical Dictionary", http://www.rosettanet.org/technicaldictionary

[19] Word Wide Web Consortium (W3C), "HyperText Markup Language (HTML) Home Page",
http://www.w3.org/MarkUp/

[20] Word Wide Web Consortium (W3C), "XML Schema", http://www.w3.org/XML/Schema

[21] Word Wide Web Consortium (W3C), "Extensible Markup Language (XML)",
http://www.w3.org/XML/

[22] OMG, "Unified Modeling Language (UML) Resource Page", http://www.omg.org/uml

[23] OMG, "XML Metadata Interchange (XMI)",
http://www.omg.org/technology/documents/formal/xmi.htm

[24] Martin Fowler, "UML Distilled, 3rd Edition: A Brief Guide to the Standard Object Modeling
Language", http://www.martinfowler.com/books.html#uml

[25] IEC, "IEC 61360 Standard data element types with associated classification scheme for electric
components", http://webstore.iec.ch for a fee

[26] ISO/IEC, "ISO/IEC 9075 - Information technology -- Database languages -- SQL",
http://www.iso.org for a fee

[27] ISO, "ISO 31 - Quantities and Units", http://www.iso.org for a fee

Appendix A. FMDesign 2.0 UML class diagram

Descriptions of the notation of UML class diagrams can be found through [22]. See [24]
for an introduction to UML. In Appendix A, classes have the class name in their first box.
Their second box contains the superclass’s name preceded by a “->”. All attributes and
relationship specified in the superclass are inherited by the class. The third box within a
class contains a list of attribute names.
Relationships between classes have cardinality constraints telling how many instances
that must participate in the relationship on each side specified as intervals
[<min>..<max>]. A ‘*’ as <max> denotes infinity. A black diamond on the owner class
side of the relationship denotes that instances on the other side belong to that class. An
unfilled diamond denotes that the instances on the other side are aggregated by a class,
but are “physically” owned by another relationship.

product_operationStates1..1

0..*

function_alternativeMeans

1..1

0..*

product_requirements 1..1

0..*

product_stakeholders

1..1

0..*

implementation_attributes

1..1

0..*

partOfMeans_subfunctions

0..1

0..*

product_productConcepts1..1

0..*

mainRequirement_subrequirements

0..1

0..*

function_requirements0..1

0..*

productConcept_implementations

1..1

0..*

product_implements0..1

0..*

variable_attributes

0..1
0..*

means_constraints 1..1

0..*

stakeholder_effectivenessMeasures

1..1

0..*

productConcept_meansSelections

1..1

0..*means_meansSelections

1..1 0..*

meansSelection_valueSelections

1..1

0..*variable_valueSelections
0..1 0..*

requirement_constraints 1..1

0..*

constraint_requirements

1..1

0..*

measure_requirements

1..1

0..*

requirement_measures 1..1
0..*

requirement_variables

1..1

0..*

variable_requirements 1..1

0..*

constraint_variables

1..1

0..*

variable_constraints

1..1

0..*

means_enforcedRequirements 1..1

0..*

requirement_enforcedByMeans

1..1

0..*

meansSelection_implementedBy

1..1

0..*

implementation_implementsMeans
1..1

0..*

product_functions

1..1

0..*

operationState_functions

1..1

0..*

function_operationStates

1..1

0..*

mainState_substates

0..1

0..*
operationState_requirements 0..1

0..*

reusingRequirement_reusedRequirements

1..1

0..*

reusedRequirement_reusedBy

1..1

0..*

function_constraints

0..1

0..*

means_operationStates

0..1

0..*

mainfunction_subfunctions

0..1

0..*

function_stateRequirements

1..1

0..*

operationState_stateRequirements 0..1

0..*

requirement_stateRequirements

0..1

0..*

function_designVariables

0..1

0..*

means_designVariables
0..1

0..*

subobject_inheritingFromLinks

1..1

0..*

superobject_inheritsToLinks
1..1

0..*

mainCategory_subcategories
0..1

0..*

designLibrary_products

1..1

0..*

designLibrary_productCategories

1..1

0..*

category_products

1..1

0..*

product_categories

1..1

0..*

designLibrary_functionCategories

1..1

0..*

category_functions

1..1

0..*

function_categories
1..1

0..*

 Element
-> DBObject

resourceId

 Product
-> CategoryObject

productReference

 OperationState
-> CategoryObject

 Function
-> GenericObject

functionReference

 Means
-> GenericObject

meansReference

 DesignVariable
-> ProbabilisticVariable

 ImplementationAttribute
-> ProbabilisticVariable

aggregationFunction

 EffectivenessMeasure
-> GenericObject

realizationPreference

 Requirement
-> ProbabilisticVariable

priority
required
requirementReference
requirementType

 ProductConcept
-> CategoryObject

 Implementation
-> CategoryObject

implementationReference
implementationType
selectedProductConcept
geometricalRepresentation
matrixTransformation

 Stakeholder
-> CategoryObject

 Constraint
-> GenericObject

checkingRoutine
equation

 MeansSelection
-> ModelElement

rationaleForSelection

 ValueSelection
-> ProbabilisticVariable

 ConstraintRequirementLink
-> Element

 MeasureRequirementLink
-> Element

 RequirementVariableLink
-> Element

 ConstraintVariableLink
-> Element

alias

 EnforcedRequirement
-> Object

 SelectionImplementationLink
-> Element

 StateFunctionLink
-> Element

 ReuseOfRequirement
-> Element

 CategoryObject
-> GenericObject

 StateRequirement
-> Element

 ModelElement
-> Element

name
definition

 Object
-> NameSpace

auxName
label
shortName
altDefinition
altName
altShortName
auxDefinition
codeGenData

 NameSpace
-> ModelElement

 ProbabilisticVariable
-> GenericObject

designSpaceMax
designSpaceMin
unit
value
variableType

 GenericObject
-> Object

icon
implementationClass
innerouter
isEncapsulated
isFinal
isPartial
isRedeclaration
isReplaceable
ordinalPosition
restriction
sourceCodeReference
usageDeclaration
variabilityPrefix
visibility

 InheritanceLink
-> Element

inheritancePriority

 DesignLibrary
-> Model

 ProductCategory
-> CategoryObject

 ProductCategoryLink

 FunctionCategory
-> CategoryObject

 FunctionCategoryLink

Domain Model Filename Date Added Date Modified #Cls #Rel #Att
DM.

Dgm

Date Printed

FMDesign23l FMDesign23l.odm 2003-04-24 20:01:23 2008-01-09 16:55:50 123 153 233
Information model of the function-means tree centered product concept design system, extended with Generic Object Inheritance.
A) Function Means Application 2006-02-13 05:19:27 2008-01-09 16:55:50 36 55 -
Appendix A: UML class diagram showing the architecture of the FMDesign systems engineering application.

2008-01-09 16:57:17

