O. Johansson. FMDesign Overview 2008-11-14. TMKT47/TMPS18

Copyright (C) 2008-2018 ROJTEC, Olof Johansson

Copyright (C) 2008 Linkoping University

You may download and use a personal copy of this document. You may not
distribute copies of this document to 3rd parties without a written permission
from one of the copyright holders.

FMDesign Overview

Olof Johansson

Contents

FMDesign Context and arChiteCtUIeccveiviiieiiecice e 2

Overview of FMDeSign USer INTEITaCE.........ccuiiiieierieieriesiesesee e 5
SEAKENOIART TTEE ...ttt bbbt e bbb 6
REQUITEIMENT TTEE. ...ttt n et bt 7
FUNCLION IMBANS TTEE ...vvivieieiee ettt sttt sttt nreenes 8
ProduCt CONCEPE TIE ...ttt bbbttt 9
IMPIEMENTALION TTEE ...cvieii ettt re e sae e nne s 11
ProbabiliStic VariabIeSccvoiiiiiiieesieseee e e e 11
DESION IMIBLTIXES ...ttt ettt et te e e s b e et e e e e sreesteensessaesteeneenreas 12

SUIMIMIBIY et bbbt b s e bt bttt b e e bt e e nb e b e e b e n e 13

RETEIBNCES ...ttt ettt 13

Appendix A. FMDesign 2.0 UML class diagramcccccevereninienininieienenese e 14

olojo
Text Box
Copyright (C) 2008-2018 ROJTEC, Olof Johansson
Copyright (C) 2008 Linköping University
You may download and use a personal copy of this document. You may not distribute copies of this document to 3rd parties without a written permission from one of the copyright holders.

O. Johansson. FMDesign Overview 2008-11-14. TMKT47/TMPS18

FMDesign Context and architecture

Figure 1 shows the role of FMDesign amongst some of its surrounding engineering
processes, connected with major workflow arrows. Engineering tools (FMDesign,
ModelicaDB, ModelicaXML, Modelica Simulation tool) support some of the processes.

Engineering models are stored in files and in databases. The communication of design
information between successive tools in the workflow can be handled through task
automation and tool integration using web services [8] or shared access to databases and
files.

Generating —
—* requirement Concept Concept Quantitative

and desirables generation selection refinement
specification
Analysis and
i evaluation
Design v
Matrix
Support
Simulation
L Program
Design Library | 008k
Database
Modelica
Standard
Outside scope Libraries
of this text

Figure 1. FMDesign in its context

FMDesign is a tool for designing product concepts with the aid of integrated requirement
trees, function-means trees, product concept trees, and implementation trees. An
implementation tree specifies the product structure and its interacting components of a
particular product concept on an abstraction level that is detailed enough so the structure,
system design, geometrical shape information etc can be used by external parameter
calculation tools. There the models are refined such that calculations can be made for
design variables like geometry, weight, drag, inertia, centre of gravity etc and feed back
as implementation attributes on the objects in the implementation tree.

Once enough details about the static structures of a product concept have been
specified, the implementation tree can be annotated with behavioural models selected
from external simulation libraries, and its implementation attributes supplied as
parameters to generated simulation models which are executed in external simulation
tools. Current integrations with simulation tools use the Modelica language semantics as
base for simulation model exchange formats [9]-[15].

Relevant processing results from external tools are feed back into the product model
in FMDesign, where checks how well its different product concepts fulfil requirements

O. Johansson. FMDesign Overview 2008-11-14. TMKT47/TMPS18

can be made. Relevant calculation and simulation results stored in the product models
provide convenient data sets to decision support tools for the continued product concept
generation and selection process.

FMDesign stores product models in a design library database. This library includes
products under development, and third party products that are used as sub-systems and
components in the currently designed products. The products are organized into one or
several parallel configurable product categorization hierarchies, so the designer quickly
can find relevant supplier products and include them as objects in implementation trees.

Starting from requirements for a product the designer uses FMDesign for modelling
alternative product concepts. The knowledge base for product design is organized into
function-means trees. A function in the product can be realized by alternative means. A
product concept is a set of means that document selected means for implementing the
functions in a product concept. Example of a function is "Actuator Power Supply”, with
alternative means like "Hydraulic Power Supply" and "Electrical Power Supply"”. Means
must be implemented by (physical) components arranged in the bill-of-material like
implementation tree of implementation objects.

A means object and its corresponding implementation objects roughly represent the
same thing, but at different levels of abstraction and detail. Implementation objects may
represent existing component products on the market or manufactured components. Some
(physical components) may implement several means, like an aircraft wing that creates
lift and stores fuel. Implementation objects only carry implementation attributes that are
important for the product concept design, and provide references to more detailed design
information like CAD-drawings, simulation models etc as URLs, file names or object
identifiers in databases.

0. Johansson. FMDesign Overview 2008-11-14. TMKT47/TMPS18

Figure 2. RAVEN - Small Business Jet
As an example an aircraft system design is chosen. This represents a system of high
complexity, a high degree of interconnectivity, it involves many domains, and have one
very formal subset of requirements in the form of the Federal Aviation Regulations FAR
[16]. These are available on-line and can be directly linked into the product model
presented here. The fictious example here represents a business jet.

O. Johansson. FMDesign Overview 2008-11-14. TMKT47/TMPS18

Overview of FMDesign User Interface

This section gives a walkthrough of FMDesign functionality as reflected in its user
interface. Appendix A shows how the information is structured within the tool. Figure 3
shows the design library window which appears when the FMDesign front-end tool is
launched at the user’s workstation.

. DL: C:% Programs\FMDesign2 304 samples' AirCraftLibrary-081 1 - | Ellﬂ
File Edit Create Tools Report Wew bindow Help
PdeuctCategDryTree Products
s A || | AirCraft 11
] CustnmerF‘rnducts AirCraft_%01_Instrument_Example
L] SAS AlrCraft %02
=] ProductClassificationTrees AirLine %1

21 ecl@ss C5-25

D 01 Sliding guide

-1 02 Cam roller guide

-1 03 Linear ball bearing guide
-1 04 Profiled rail guide

-1 058 Cage rail guide

~[Z1 0B Telescopic rail guide
-2 07 Acme screw drive

-2 08 Ball screw screw

-2 09 Roller screw drive
#1127 Electric engineering, automation, proce
=[] 28 Automotive technology

[:| 03 A|r|:raﬁ

Figure 3. FMDesign Design Library Window

The product category tree allows the user to quickly narrow the list of all products
displayed in the Products list-box to the ones in the category searched for. Products can
quickly be moved from one product category to another with the drag-and-drop interface.
Selecting a product, and pressing the “Product Window” button opens the Product
Window in Figure 4.

O. Johansson. FMDesign Overview 2008-11-14. TMKT47/TMPS18

=
File Edit Create Tools Report Wew Window Help
Mame | AirCraft_\v01 Definition | & sample product of an aircraft For demonstration of FM-design Functionality,
StakeholderTree FunctionMzansTree ProductConceptCategory Tree
[E AirCraft_v01 S AirCraft_01 B AirCraft 401
Aircraft Operator @) In flight [FD]) ATA Code Concept
AirPort -+{Fy Cantrol Aircraft Economy Concept
Governrment D Contral System i High Perfarmance Canc
L LIE FARZS Fulfilment -(F, Control Pitch LT JASC JOINT AIRCRAF
i[5 Passengers v r
= = ch Elevator ProduckConceptTree
RequirementTree By Create Control F

s

[/, Create Elevator,
-[E] 25145 - Langitudin
-[E] Rotate aircraft for T
7, Control Rall

Ty Control Yaw

-y Create lift

[Py Create Retardation in Air

= High Performance Conceg s
E3sl Carry on ground = Lanc
Cantral Aircraft = Contr
Control Pitch = Elew:
5 Create Elevator &
[T Elevator

i-105) Control Roll = Inbnarv

[®, Create Thrust
{F, Stahility ImplementationTres (assembhy)
105 - Takeoff. £+@) On ground z:[ptl| High Pefarmance Concepa
[E] 25.107 - Takeoff spe 05) Boarding Aircraft
25.109 - Accelerate-: {Fy Carry on grnundl [T] Fuselage
25 121 - Climb: One- [y Create Retardation on Grou
25.125 - Landing. (T} Ground Steering
25145 - Longitudinal - {Fy Hydraulic Powar Supply
25,147 - Directional : £3(TY Store fuel
- Structure ~[@1] Fuel tank
- Design and Constru
- Powerplant
Figure 4. Product Window

The Product Window provides access to the trees that structure the product model and
menus with tools for checking the model with design rules, generating reports etc. Trees
that are deeper than a few levels can be edited in separate browser windows. These are
launched by selecting an appropriate object and opening a tree browser window that has
the selected object as root with a press of a “Browse” button.
In the following the different product model trees are explained in more detail.

Stakeholder Tree

A stakeholder is an organization or category of persons with a certain interest in the
product. Stakeholders can be users, operators, owners/buyers/customers, engineers,
manufacturers, management etc.

O. Johansson. FMDesign Overview 2008-11-14. TMKT47/TMPS18

StakeeholderTres

.3E Revenue per Passenger Mile
- {5 AirPort

L3E FAR25 Fulfilment
- [5 Passengers
- {5 Pilots

-JE, Development Cost
-3E, Development Time
«3E. Production Cost per Unit

Figure 5. Stakeholder Tree

The stakeholder tree organizes stakeholders into different categories. Each stakeholder
may own effectiveness measures. Effectiveness measures establish the criteria by which
alternative product concepts will be judged by its stakeholder. They provide guidance to
the developers of structure and behavioural models on what is most important to the

different stakeholders. See [5], Chapter 6.

Requirement Tree

The requirement tree structures the requirements into different topics, from overall non-
functional requirements [6] down to optional requirements that are enforced when a
particular means is selected for a function. Figure 6 shows a requirement browser opened

on a copy of Part 25 within the Federal Aviation Regulations [16].

File Edit Create Tools Wiew Window Help
Requirement Tree
=[] FAR25

i-[E] A - General
=[] B - Flight
-[R] 25.105 - Takeoff.
-[R] 26.107 - Takeoff speeds.
-[R] 26.109 - Accelerate-stop distance.
-[R] 26.121 - Climh: One-engine-inoperative.
i+[R] 25 125 - Landing.
-[R] 25.145 - Longitudinal control
-[R] 25147 - Directional and lateral control.
-[R] C - Structure
-[R] D - Design and Construction
-[®] E - Powerplant
-[®] F - Equipment
-[R] G - Operating Limitations and Information

Figure 6. Requirement Tree

O. Johansson. FMDesign Overview 2008-11-14. TMKT47/TMPS18

Requirements can be linked with drag-and-drop to other design objects like functions and
means that are affected.

Numerical requirements like operation range, max speed etc can optionally be specified
as a probabilistic distribution which describes the range in which the final design is
desired to perform. This facility efficiently tells the designers what room they have for
trade-offs.

Function Means Tree

The function-means tree serves as a tool for creative layout and later documentation and
evaluation of the high-level design space considered for the product. See Figure 7.

It works as an ordinary function means tree, except for the inclusion of operation
states. These specifies a certain state of operation for the product, e.g. for an aircraft, “In
flight”, “On Ground” etc. Each operation state only groups the functions that are
necessary for the product to perform in that operation state. The same function can be
grouped under several different operation states. Dividing the products mission cycles
into operation states gives the designer focus on what functions that are necessary in
different states, and what requirements that apply to these functions in a particular state.
A function can have design variables like outputForce, outputTorque etc. These can have
an assigned value, optional probabilistic distribution, and a variable type that tells if this
is a variable that is controllable by the designer or not, or a value calculated by an
external program that takes other variables as input.

Il F11: Product I] 5

File Edit Create Tools View Window Help

FunctionMeans Tree
AirCraft_Vi1 A
+@oE) In flight

- @ Control Aircraft

1] Control System

-7y Attach Elevator

& Create Control Force

[Create Elevator Angle

Linear Actuator

& Create Linear Movement
Electrical Actuator

Electro Hydraulic Actuator
[F, Create Flow

[, Create Linear Movement
[Modify Flow

[F, Transform Electrical Power to Rotation
Hydaulic Actuator

-/ Transfer Linear Movement to Angle

-[R] 25.145 - Longitudinal contral.

-[R] Rotate aircraft far TO

Control Roll

7y Control Yaw

Create Iit

Create Retardation in Air

Create Thrust

Stability

z) On ground

“i0%) Boarding

i /Ty Board Passengers 3

Figure 7. Function Means Tree

O. Johansson. FMDesign Overview 2008-11-14. TMKT47/TMPS18

A means can also have design variables that specify the ones in its function more
precisely, and perhaps additional variables that are specific to that means.

A benefit with function means trees compared with less formal traditional design
methods, is that much of the knowledge and research that is documented in it is often lost
or hard to find after the designers have decided on a particular product concept and
proceeded with its detailed design. When the design of the next release of the product is
started, some means that were not selected in the last product design phase may be
interesting again, since technology and requirements may have changed. Much research
and exploration may have to be done again, perhaps by new people if the market cycle for
a product revision is long.

Product Concept Tree

A product concept tree documents which means that is selected for each used function in
the function means tree. The product concept tree fixes the design choices such that a
product implementation can be modelled and evaluated.

A MeansSelection is an object that documents what Means that was selected for a
particular function. It may be connected to one or several implementation objects in the
implementation tree. In some cases, the design variable specifications for a Function-
Means pair must be further customized when it is selected in a particular product concept.
The design variable value or associated probabilistic distribution may have to be changed.
This can be done by ValueSelection objects that override specific design variables for a
particular means selection.

O. Johansson. FMDesign Overview 2008-11-14. TMKT47/TMPS18

. PC: ProductConcept High Performance Concepk
File Edit

_ ol x|
Create Tools Wiew Windaow Help
ProductConceptTree
=[e] High Performance Concept
HEaE) Carry on ground = Landing gear
iepg) Control Aircraft = Control System

_ﬁ Control Pitch = Elevator

p1s) Create Elevator Angle = Linear Actuatar
tis Create Linear Movement = Electra Hydraulic Actuatar

v015 Control ¥aw = Rudder

=upas| Create lift = Wing with high lift devices
-[T] FlapsL
-[I] FlapsR

-[T] Surface

w1 Caontral Roll = Inboard and outhoard airlerans

S+BE Create Retardation in Air = Flaps, spoilers and landing gear
#[T] Main gear
Z+p1 Create Retardation on Ground = Wheel brakes
-[T] Brakes
01 Create Thrust = Use twa turbo-fan engines
[T Enginel

«[I] EngineR
- Store fuel = Fuel tank

Figure 8.

Product Concept Tree

The same function and means can be instantiated many times in a product concept. For
example the aircraft may have several engines of the same type.

10

O. Johansson. FMDesign Overview 2008-11-14. TMKT47/TMPS18

Implementation Tree

The implementation tree displays and provides functionality for editing one of many
configurable implementation trees for a particular product concept.

Il i: ProductConcept High Performance O] x|

File Edit Create Tools Miew Window Help

ImplementationTree (assembly)
~

-[T] Rudder
-[T] Structure
-[T] Surface

|:|
=+[T] Electro Hydraulic Actuatar
=[T] Piston
LT Servo Walve
.[T] Surface
w1 AirleronR
-[T] Enginel
-[T] EngineR
[T External geometry
~ A CR=30m
~ A CT=20m
“[&] Span=260m
-[T] FlapsL v

Figure 9. Implementation Tree

These implementation trees organize the implementation objects that represent and refer
to more detailed models of physical objects, functional models, simulation models,
geometrical layout models etc, and organize them into trees that are useful for interfacing
with tools later in the product development process.

Probabilistic Variables

All variables that may have a numeric value like Requirements, DesignVariables, and
ImplementationAttributes are probabilistic variables that can have an optional

11

O. Johansson. FMDesign Overview 2008-11-14. TMKT47/TMPS18

probabilistic distribution. Currently normal-, uniform-, interval- value-, and a special
custom distribution with a configurable probability density function are supported.
Probabilistic variables may optionally have an assigned designSpaceMax, and
designSpaceMin value, which let the designer set fixed limits for design space
exploration by external optimization programs.

Design Matrixes
Design matrixes provide views on the trees and how individual objects in different trees
are related to each other.

. DM: FunctionMeansTree-to-Component mapping - Control System o |EI|5|
File Edit Tools Yiew Window Help
3 FunctionMeansTree ~
=
@) = B B
2@ E R EE
AR S EIEEE ¢ m)| ¢ jm
o= =n 2 (=2
o3 |F| BB B 51E5|8
ﬁ_gbooa EICIEE)
212|528 |3 w(E e
IR a2 E|®T|= HEEINEs
= Fle B |m
EOEEEE'M”M'EEE E_@g E.
“Ssm;bgma@@.@EE@EI,, 2
5 = m§ a (@ |2 |2 =R =3
Z|e =3 r““QQEIEIE"‘IEE‘L‘; =
-,~§,E',§E.E.§mma <|B |m|E|| |B
i SIRIBIzIE R EEEEEFE
o] ? S g Bim|g |2 g = | @ = A
2 e [A ER RSN E
| & z2EEEELITEIBIZL] |E
S| [REEE
d = 2 g
SRR |z| (R §§"‘ § @
o 4 5 .| =
= = |2
= g g g E
g |B o =
= g E S
- 8 4
g B
el
g
.
g
¥t B High Performance Concept
g E [T Aircraft
E‘ E [T] Fuselage
g = [T Tail
g B [1] Fin
fgf' = (1] Horizontal Tail Plane
o =l [T] Elevator 4
g = [I] Electro Hydraulic Actuator =
|E| [T] Valve =
= 1] Structure
=l [T] Surface
= 1] Wing
[T] AirleronL =
[T] AirleronR X w
< >

Figure 10. Design Matrix

Figure 10 shows a function means tree to implementation tree mapping. Other design

matrixes show:
Stakeholder requirements to effectiveness measure mapping, where the requirements
specify target values for the effectiveness measures relevant for different stakeholders.

12

O. Johansson. FMDesign Overview 2008-11-14. TMKT47/TMPS18

Stakeholder tree to main function tree mapping. A main function tree only show the root-
most functions of the product and not any sub functions of any particular means. The
values in this matrix show the requirement priority a certain stake holder gives to a
particular function, and can guide the design project resource allocation and scheduling of
implementation and evaluation efforts for different functions.

Connection matrix, which is an implementation tree to implementation tree mapping,
where the values in the matrix specify if two implementation objects are connected. This
information may guide the initial geometrical layout of the product.

Summary
FMDesign is a tool for designing product concepts with the aid of integrated requirement
trees, function-means trees, product concept trees, and implementation trees.

Design matrixes provide views on the trees and how individual objects in different trees
are related to each other.

References

[1] Mogens Myrup Andreasen. "Machine Design Methods Based on a Systematic Approach
(Syntesemetoder pa systemgrundlag)”, Lund Technical University, Lund, Sweden, 1980

[2] Bracewell, R.H. and Sharpe, J.E.E., "Functional descriptions used in computer support for
qualitative scheme generation - "Schemebuilder"”, Al EDAM Journal - Special Issue: Representing
Functionality in Design, v10, n4, pp333-346, 1996

[3] Bracewell, R.H. and Sharpe, J.E.E., "The use of Bond Graph Methodology in an Integrated
Interdisciplinary Design System", in Joint Hungarian-British Mechatronics Conference, Budapest,
Computational Mechanics Publications, pp595-600, 1994

[4] Soéren Wilhelms, "Reuse of principle solution elements in conceptual design : an information
model for concepts in systematic design”, 2003, ISBN : 91-7373-746-1

o Krister Sutinen, "Supporting requirements management by requirements driven product modelling”,
Doktorsavhandlingar vid Chalmers tekniska hogskola. New series nr 2065, Sweden, 2004

[5] David W Oliver et. al "Engineering Complex Systems with models and objects"”, McGraw-Hill,
1997, ISBN 0-07-048188-1

[6] Andreas Borg, “Contribution to Management and Validation of Non-Functional Requirements”,
Linkdping University, 2004

[7] INCOSE, International Council on System Engineering, http://www.incose.org

[8] Bjorn Johansson, Petter Krus, "A WEB SERVICE APPROACH FOR MODEL INTEGRATION
IN COMPUTATIONAL DESIGN", Proceedings of DETC’03, ASME 2003 Design Engineering
Technical Conferences and Computers and Information in Engineering Conference Chicago, Illinois
USA, September 2-6, 2003, DETC2003/CIE-48196

[9] Modelica Association, "A Unified Object-Oriented Language for Physical Systems Modeling,
Language Specification version 2.1", Modelica Association, 2004

[10] Modelica Association, http://www.modelica.org
[11] Modelica Association, "Modelica Libraries”, http://www.modelica.org/library

[12] Peter Fritzson, "Principles of Object-Oriented Modeling and Simulation with Modelica 2.1",
IEEE Press, 2004, ISBN 0-471-47163-1

13

O. Johansson. FMDesign Overview 2008-11-14. TMKT47/TMPS18

[13] Olof Johansson, Adrian Pop, Peter Fritzson, "ModelicaDB - A Tool for Searching, Analysing,
Cross-referencing and Checking of Modelica Libraries”, in Proc of 4th International Modelica
Conference, 8-10 March, 2005, Hamburg, Germany,
http://www.modelica.org/events/Conference2005

[14] Olof Johansson, Adrian Pop, Peter Fritzson, "A Functionality Coverage Analysis of Industrially
used Ontology Languages", in Model Driven Architecture: Foundations and Applications (MDAFA),
2004, 10-11 June, 2004, Linkdping, Sweden.

[15] Adrian Pop, Olof Johansson, Peter Fritzson, "An integrated framework for model-driven product
design and development using Modelica”, in Proceedings of the 45" Conference on Simulation and
Modeling (SIMS), 23-24 September 2004, Copenhagen.

[16] Risingup Aviation, "Federal Aviation Regulations Part 25: Airworthiness standards: Transport
category airplanes”, Web resource for research: http://www.risingup.com/fars/info/25-index.shtml

[17] RosettaNet, http://www.rosettanet.org
[18] RosettaNet, "RosettaNet Technical Dictionary”, http://www.rosettanet.org/technicaldictionary

[19] Word Wide Web Consortium (W3C), "HyperText Markup Language (HTML) Home Page",
http://www.w3.org/MarkUp/

[20] Word Wide Web Consortium (W3C), "XML Schema", http://www.w3.0org/XML/Schema
[21] Word Wide Web Consortium (W3C), "Extensible Markup Language (XML)",

http://www.w3.org/ XML/
[22] OMG, "Unified Modeling Language (UML) Resource Page", http://www.omg.org/uml
[23] OMG, "XML Metadata Interchange (XMI)",

http://www.omg.org/technology/documents/formal/xmi.htm

[24] Martin Fowler, "UML Distilled, 3rd Edition: A Brief Guide to the Standard Object Modeling
Language", http://www.martinfowler.com/books.html#uml

[25] IEC, "IEC 61360 Standard data element types with associated classification scheme for electric
components”, http://webstore.iec.ch for a fee

[26] ISO/IEC, "ISO/IEC 9075 - Information technology -- Database languages -- SQL",
http://www.iso.org for a fee

[27] ISO, "ISO 31 - Quantities and Units", http://www.iso.org for a fee

Appendix A. FMDesign 2.0 UML class diagram

Descriptions of the notation of UML class diagrams can be found through [22]. See [24]
for an introduction to UML. In Appendix A, classes have the class name in their first box.
Their second box contains the superclass’s name preceded by a “->”. All attributes and
relationship specified in the superclass are inherited by the class. The third box within a
class contains a list of attribute names.

Relationships between classes have cardinality constraints telling how many instances
that must participate in the relationship on each side specified as intervals
[<min>..<max>]. A “*’ as <max> denotes infinity. A black diamond on the owner class
side of the relationship denotes that instances on the other side belong to that class. An
unfilled diamond denotes that the instances on the other side are aggregated by a class,
but are “physically” owned by another relationship.

14

Element subobject_inheritingFromLinks o DesignLibrary
-> DBObject - -> Model
resourceld | 11 CategoryObject YR YRY)
- = 11 11 11
GenericObject -> GenericObject
-> Object <zo..1
ModelElement - 4 mainCategory| subcategories _ _ _ _
-> Element fcon R designLibrary_functionCategories
name implementationClass — -
definition innerouter Probabilisticvariable designLibrafy_productCategories
!sEr_lca;l:sulated -> GenericObject o
isFina - -
NameSpace isPartial gzz:gzggzg:mfﬁ ProductCategory
~> ModelElement] isRedeclaration unit -> CategoryObject
isReplaceable value 0.%
- ordinalPosition - 1.1 = <
Object restriction o variableType Functlonc,ate_gory
-> NameSpace | |sourceCodeReference - - category| products |~> CategoryObject
auxNane usageDeclaration InheritanceLink »
1abel varial ityPrefix > Element 2
visibility = = —— 0.*
shortName inheritancePriorit - category_functions
altbefinition . . Tox [ProductCategoryLink] -
altName superobject| inheritsToLinks" _ R "
altShorthame designLibrany_products 0. o
e e aon product_categgries [FunctionCategoryLink]
product_stakeholders 0.*
’1 1 ov.*{ 11
Product .
. _ - 0.1 product_implements
0- product_requirements 1.1 |-> CategoryObject 1
Stakeholder ¥ productRreference product_productConcepts
-> CategoryObject ¢ Ql ! product_operationStates
11 quct functi means_operationStates o.x
roduct_functions
B = mainState_substates ProductConcept
stakeholder| effectivenesshMeasures or los | ox -> CategoryObject
. i i 0.1 - 1.1 1.1
. 0 operati onSt_ate_requ irements . OperationState }
EffectivenessMeasure operationState_stateRequirements 01— CategoryObject
-> GenericObject ‘ o.x . ”
realizationPreference o.» | StateRequirement ’ % ’
1 -> Element operationState| functions
measure_requirements requirgment]_stateRequirements | 0.* 0.x
o function| stateRequirements | StateFunctionLink productConcepit_implenentations
MeasureRequirementLink . OnlainRe?ljirement_subrequirements —> Element -
-> Element - : . . function |operationStates
Py Requirement
requiremenlJ, measures 1.1 |-> Probabilisticvariable B
= g P partOfMeans_subfunctions
priority
requirement_constraints ! |required mainfunction_subfunctions
requirementReference
. requirementType 0411 |0 | ox B |
° 1 Y YEEE R EToTT] L1 [Euncti function_categories
ConstraintRequirementLink @ unction 11
> Element function_requirements?! |-> GenericObject [@-
o reusedRequirement_reusedBy [functionReferencg
reusingRequirement_reusedRequirements 0.1 Y“ 1 <?° 1
0.* 0.*
ReuseOfRequirement function_alternativeleans
-> Element
requirement_enforcedByMeans
constraipt_requirements 0.x productConcept_meansSelections
EnforcedRequirement S B
—> Object Implementation
function_constraints 0.* j> Category(_)bject
- - - _ implementationReference
function_designVvariables means_meansSelections | 0.* implementationType
MeansSelection selectedProductConcept
0. ()o.1()o.1 i i
- . geometricalRepresentation
means | enforcedRequirements 11 Means 110> |=> h_AodelElement » matrixTransformation
means_constraints 1.1 rationaleForSelectio 1 1
= @®|-> GenericObject 01 1 01 1 - ~ i
. implementation_jimplementsMeans
meansReference
01 mear|sSelection | implementedBy
requirement| variables _ i 0.x 0.x
SelectionlmplementationLink
{}1"1 ox | ox o > Element
Constraint RequirementVariableLink .]]] .
-> GenericObject] > Element meansSelectign_valueSelections implementation_attributes
heckingRouti o
gqﬁgt:gg outine 0.* e variable_valueSelections 0.x imol AtonATIibuT
11 variable_reqlirements 1.1 | DesignVariable 0.1 o+ | ValueSelection mplementationAttribute
constrainy variables > Probabilisticvariablé > Probabilisticvariablé > Probabilisticvariable
o aggregationFunction
- - - 1.1 0.1 S
ConstraintVariableLink | . . _ ; 0.
> Element >+ variable_constraints variable_attributes
alias
[Date Printed
‘ 2008-01-09 16:57:17
Domain Model Filename Date Added Date Modified #Cls| #Rel| #Att
DM. | FMDesign23I FMDesign23l.odm 2003-04-24 20:01:23 2008-01-09 16:55:50 123 | 153 | 233
Information model of the function-means tree centered product concept design system, extended with Generic Object Inheritance.
Dgm | A) Function Means Application | 2006-02-13 05:19:27 2008-01-0916:55:50 | 36 | 55 | -
Appendix A: UML class diagram showing the architecture of the FMDesign systems engineering application.

